Abstract
Mouse models of diabetes are important tools used in preclinical diabetes research. However, when working with these models, it is important to consider factors that could influence experimental outcome. This is particularly important given the wide variety of models available, each with specific characteristics that could be influenced by extrinsic or intrinsic factors. Blood glucose concentrations, a commonly used and valid endpoint in these models, are particularly susceptible to manipulation by these factors. These include potential effects of intrinsic factors such as strain, sex, and age and extrinsic factors such as husbandry practices and experimental protocols. These variables should therefore be taken into consideration when the model is chosen and the experiments are designed. This chapter outlines common variables that can impact the phenotype of a model, as well as describes the methods used for assessing onset of diabetes and monitoring diabetic mice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
King A, Bowe J (2016) Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol 99:1–10. https://doi.org/10.1016/j.bcp.2015.08.108
King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM (2014) Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol 222(3):G13–G25. https://doi.org/10.1530/joe-14-0182
Leiter EH (2009) Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Methods Mol Biol 560:1–17. https://doi.org/10.1007/978-1-59745-448-3_1
Morton DB (2000) A systematic approach for establishing humane endpoints. ILAR J 41(2):80–86. https://doi.org/10.1093/ilar.41.2.80
Leiter EH, Schile A (2013) Genetic and pharmacologic models for type 1 diabetes. Curr Protoc Mouse Biol 3(1):9–19. https://doi.org/10.1002/9780470942390.mo120154
Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46(5):887–894. https://doi.org/10.2337/diab.46.5.887
Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R (2007) Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice. Diabetes 56(5):1268–1276. https://doi.org/10.2337/db06-0658
Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, Tsai MJ, Mauvais-Jarvis F (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103(24):9232–9237. https://doi.org/10.1073/pnas.0602956103
Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world--recent facts and figures. Immunol Today 14(5):193–196. https://doi.org/10.1016/0167-5699(93)90160-m
Tiano JP, Mauvais-Jarvis F (2012) Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes. Nat Rev Endocrinol 8(6):342–351. https://doi.org/10.1038/nrendo.2011.242
Xu B, Allard C, Alvarez-Mercado AI, Fuselier T, Kim JH, Coons LA, Hewitt SC, Urano F, Korach KS, Levin ER, Arvan P, Floyd ZE, Mauvais-Jarvis F (2018) Estrogens promote misfolded proinsulin degradation to protect insulin production and delay diabetes. Cell Rep 24(1):181–196. https://doi.org/10.1016/j.celrep.2018.06.019
Gale EA, Gillespie KM (2001) Diabetes and gender. Diabetologia 44(1):3–15. https://doi.org/10.1007/s001250051573
Mauvais-Jarvis F (2015) Sex differences in metabolic homeostasis, diabetes, and obesity. Biol Sex Differ 6:14. https://doi.org/10.1186/s13293-015-0033-y
Hull RL, Willard JR, Struck MD, Barrow BM, Brar GS, Andrikopoulos S, Zraika S (2017) High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 233(1):53–64. https://doi.org/10.1530/joe-16-0377
Andrikopoulos S, Massa CM, Aston-Mourney K, Funkat A, Fam BC, Hull RL, Kahn SE, Proietto J (2005) Differential effect of inbred mouse strain (C57BL/6, DBA/2, 129T2) on insulin secretory function in response to a high fat diet. J Endocrinol 187(1):45–53. https://doi.org/10.1677/joe.1.06333
Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56(5):1129–1139. https://doi.org/10.1007/s00125-013-2846-8
Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10):454–466. https://doi.org/10.1242/dmm.001941
Azushima K, Gurley SB, Coffman TM (2018) Modelling diabetic nephropathy in mice. Nat Rev Nephrol 14(1):48–56. https://doi.org/10.1038/nrneph.2017.142
Mi X-S, Yuan T-F, Ding Y, Zhong J-X, So K-F (2014) Choosing preclinical study models of diabetic retinopathy: key problems for consideration. Drug Des Devel Ther 8:2311–2319. https://doi.org/10.2147/DDDT.S72797
O’Brien PD, Sakowski SA, Feldman EL (2014) Mouse models of diabetic neuropathy. ILAR J 54(3):259–272. https://doi.org/10.1093/ilar/ilt052
Lindstrom P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal 7:666–685. https://doi.org/10.1100/tsw.2007.117
Andersson DA, Filipovic MR, Gentry C, Eberhardt M, Vastani N, Leffler A, Reeh P, Bevan S (2015) Streptozotocin stimulates the ion channel TRPA1 directly: involvement of peroxynitrite. J Biol Chem 290(24):15185–15196. https://doi.org/10.1074/jbc.M115.644476
Evan AP, Mong SA, Connors BA, Aronoff GR, Luft FC (1984) The effect of alloxan, and alloxan-induced diabetes on the kidney. Anat Rec 208(1):33–47. https://doi.org/10.1002/ar.1092080105
Wicksteed B, Brissova M, Yan W, Opland DM, Plank JL, Reinert RB, Dickson LM, Tamarina NA, Philipson LH, Shostak A, Bernal-Mizrachi E, Elghazi L, Roe MW, Labosky PA, Myers MG Jr, Gannon M, Powers AC, Dempsey PJ (2010) Conditional gene targeting in mouse pancreatic ss-cells: analysis of ectopic Cre transgene expression in the brain. Diabetes 59(12):3090–3098. https://doi.org/10.2337/db10-0624
De Francesco PN, Cornejo MP, Barrile F, Garcia Romero G, Valdivia S, Andreoli MF, Perello M (2019) Inter-individual Variability for high fat diet consumption in inbred C57BL/6 Mice. Front Nutr 6:67. https://doi.org/10.3389/fnut.2019.00067
Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295(6):E1323–E1332. https://doi.org/10.1152/ajpendo.90617.2008
McGuinness OP, Ayala JE, Laughlin MR, Wasserman DH (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab 297(4):E849–E855. https://doi.org/10.1152/ajpendo.90996.2008
Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, Wasserman DH, McGuinness OP (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3(9–10):525–534. https://doi.org/10.1242/dmm.006239
Kappel S, Hawkins P, Mendl MT (2017) To group or not to group? Good practice for housing male laboratory mice. Animals 7(12). https://doi.org/10.3390/ani7120088
Rasmussen S, Miller MM, Filipski SB, Tolwani RJ (2011) Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Animal Sci 50(4):479–483
Ghosal S, Nunley A, Mahbod P, Lewis AG, Smith EP, Tong J, D’Alessio DA, Herman JP (2015) Mouse handling limits the impact of stress on metabolic endpoints. Physiol Behav 150:31–37. https://doi.org/10.1016/j.physbeh.2015.06.021
Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826. https://doi.org/10.1038/nmeth.1500
Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO (2016) Challenges and issues with streptozotocin-induced diabetes - a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63. https://doi.org/10.1016/j.cbi.2015.11.032
Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226. https://doi.org/10.1007/s00125-007-0886-7
King AJ, Austin AL, Nandi M, Bowe JE (2017) Diabetes in rats is cured by islet transplantation...But only during daytime. Cell Transplant 26(1):171–172. https://doi.org/10.3727/096368916X692258
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160(7):1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x
Weitgasser RDAWG (1999) Measurement of glucose concentrations in rats: differences between glucose meter and plasma laboratory results. Diabetologia 42(2):256–256. https://doi.org/10.1007/s001250051147
Peterson RG, Brockway R (2012) Assessment of Nova Biomedical StatStrip® glucose meters and test strips in rodent glucose studies. FASEB J 26(1_supplement):1127.1111. https://doi.org/10.1096/fasebj.26.1_supplement.1127.11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
King, A.J.F., Daniels Gatward, L.F., Kennard, M.R. (2020). Practical Considerations when Using Mouse Models of Diabetes. In: King, A. (eds) Animal Models of Diabetes. Methods in Molecular Biology, vol 2128. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0385-7_1
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0385-7_1
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0384-0
Online ISBN: 978-1-0716-0385-7
eBook Packages: Springer Protocols