Skip to main content

Membrane Protein Solubilization and Quality Control: An Example of a Primary Active Transporter

  • Protocol
  • First Online:
Expression, Purification, and Structural Biology of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2127))

Abstract

When purifying a membrane protein, finding a detergent for solubilization is one of the first steps to master. Ideally, only little time is invested to identify the best-suited detergent, which on the one hand would solubilize large amounts of the target protein but on the other hand would sustain the protein’s activity. Here we describe the solubilization screen and subsequent activity assay we have optimized for the bacterial P-type ATPase KdpFABC. In just 2 days, more than 70 detergents were tested for their solubilization potential. Afterwards, a smaller selection of the successful detergents was assayed for their ability to retain the activity of the membrane protein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorr JM, Scheidelaar S, Koorengevel MC, Dominguez JJ, Schafer M, van Walree CA, Killian JA (2016) The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur Biophys J 45(1):3–21. https://doi.org/10.1007/s00249-015-1093-y

    Article  CAS  PubMed  Google Scholar 

  2. Parker JL, Newstead S (2012) Current trends in alpha-helical membrane protein crystallization: an update. Protein Sci 21(9):1358–1365. https://doi.org/10.1002/pro.2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7(12):1003–1008. https://doi.org/10.1038/nmeth.1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho KH, Husri M, Amin A, Gotfryd K, Lee HJ, Go J, Kim JW, Loland CJ, Guan L, Byrne B, Chae PS (2015) Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study. Analyst 140(9):3157–3163. https://doi.org/10.1039/c5an00240k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ilgu H, Jeckelmann JM, Gachet MS, Boggavarapu R, Ucurum Z, Gertsch J, Fotiadis D (2014) Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys J 106(8):1660–1670. https://doi.org/10.1016/j.bpj.2014.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kunji ER, Harding M, Butler PJ, Akamine P (2008) Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods 46(2):62–72. https://doi.org/10.1016/j.ymeth.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  7. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1–2):105–117. https://doi.org/10.1016/j.bbamem.2004.04.011

    Article  CAS  Google Scholar 

  8. Stock C, Hielkema L, Tascon I, Wunnicke D, Oostergetel GT, Azkargorta M, Paulino C, Hänelt I (2018) Cryo-EM structures of KdpFABC suggest a K+ transport mechanism via two inter-subunit half-channels. Nat Commun 9(1):4971. https://doi.org/10.1038/s41467-018-07319-2

  9. Huang CS, Pedersen BP, Stokes DL (2017) Crystal structure of the potassium-importing KdpFABC membrane complex. Nature 546(7660):681–685. https://doi.org/10.1038/nature22970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siebers A, Altendorf K (1988) The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem 178(1):131–140

    Google Scholar 

  11. Gassel M, Siebers A, Epstein W, Altendorf K (1998) Assembly of the Kdp complex, the multi-subunit K+-transport ATPase of Escherichia coli. Biochim Biophys Acta 1415(1):77–84

    Google Scholar 

  12. Bramkamp M, Altendorf K (2005) Single Amino Acid Substitution in the Putative Transmembrane Helix V in KdpB of the KdpFABC Complex of Escherichia coli Uncouples ATPase Activity and Ion Transport. Biochemistry 44(23):8260–8266

    Article  CAS  Google Scholar 

  13. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  14. Parker JL, Newstead S (2016) Membrane Protein Crystallisation: Current Trends and Future Perspectives. Adv Exp Med Biol 922:61–72. https://doi.org/10.1007/978-3-319-35072-1_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loll PJ (2014) Membrane proteins, detergents and crystals: what is the state of the art? Acta Crystallogr F Struct Biol Commun 70(Pt 12):1576–1583. https://doi.org/10.1107/S2053230X14025035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Vis Exp 45. https://doi.org/10.3791/1712

  17. Gourdon P, Andersen JL, Hein KL, Bublitz M, Pedersen BP, Liu X-Y, Yatime L, Nyblom M, Nielsen TT, Olesen C, Møller JV, Nissen P, Morth JP (2011) HiLiDe—systematic approach to membrane protein crystallization in lipid and detergent. Cryst Growth Des 11(6):2098–2106. https://doi.org/10.1021/cg101360d

    Article  CAS  Google Scholar 

  18. Kulig W, Tynkkynen J, Javanainen M, Manna M, Rog T, Vattulainen I, Jungwirth P (2014) How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers? J Mol Model 20(2):2121. https://doi.org/10.1007/s00894-014-2121-z

    Article  CAS  PubMed  Google Scholar 

  19. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316(1):1–6. https://doi.org/10.1006/jmbi.2001.5295

    Article  CAS  PubMed  Google Scholar 

  20. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727. https://doi.org/10.1016/j.febslet.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  21. Frauenfeld J, Loving R, Armache JP, Sonnen AF, Guettou F, Moberg P, Zhu L, Jegerschold C, Flayhan A, Briggs JA, Garoff H, Low C, Cheng Y, Nordlund P (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13(4):345–351. https://doi.org/10.1038/nmeth.3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131(22):7484–7485. https://doi.org/10.1021/ja810046q

    Article  CAS  PubMed  Google Scholar 

  23. Fendler K, Dröse S, Altendorf K, Bamberg E (1996) Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli. Biochemistry 35(24):8009–8017

    Google Scholar 

  24. Gewering T, Januliene D, Ries AB, Moeller A (2018) Know your detergents: A case study on detergent background in negative stain electron microscopy. J Struct Biol 203(3):242–246. https://doi.org/10.1016/j.jsb.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  25. Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3(2):256–266. https://doi.org/10.1038/nprot.2007.519

    Article  CAS  PubMed  Google Scholar 

  26. Siebers A, Kollmann R, Dirkes G, Altendorf K (1992) Rapid, high yield purification and characterization of the K(+)-translocating Kdp-ATPase from Escherichia coli. J Biol Chem 267(18):12717–12721

    CAS  PubMed  Google Scholar 

  27. Damnjanovic B, Weber A, Potschies M, Greie JC, Apell HJ (2013) Mechanistic analysis of the pump cycle of the KdpFABC P-type ATPase. Biochemistry 52(33):5563–5576. https://doi.org/10.1021/bi400729e

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Hänelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stock, C., Hänelt, I. (2020). Membrane Protein Solubilization and Quality Control: An Example of a Primary Active Transporter. In: Perez, C., Maier, T. (eds) Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, vol 2127. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0373-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0373-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0372-7

  • Online ISBN: 978-1-0716-0373-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics