Cell Tracking pp 141-153 | Cite as

Stem Cell Tracking with Nanoparticle-Based Ultrasound Contrast Agents

Part of the Methods in Molecular Biology book series (MIMB, volume 2126)


Cell therapy is revolutionizing modern medicine. To promote this emerging therapy, the ability to image and track therapeutic cells is critical to monitor the progress of the treatment. Ultrasound imaging is promising in tracking therapeutic cells but suffers from poor contrast against local tissues. Therefore, it is critical to increase the ultrasound contrast of therapeutic cells over local tissue at the injection site. Here, we describe a method to increase the ultrasound intensity of therapeutic cells with nanoparticles to make the injected therapeutic cells more visible.

Key words

Cell tracking Ultrasound imaging Contrast agents Nanoparticles Mesenchymal stem cells 



This work was supported by NIH (R00 HL117048 and DP2 HL137187) and the American Cancer Society Institutional Research (grant number 14-250-42). F. Chen also acknowledges Eric Zhao for proofreading the chapter.


  1. 1.
    Bulte JWM, Daldrup-Link HE (2018) Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology 289:604–615CrossRefGoogle Scholar
  2. 2.
    June CH, O’connor RS, Kawalekar OU et al (2018) CAR T cell immunotherapy for human cancer. Science 359:1361–1365CrossRefGoogle Scholar
  3. 3.
    Nguyen PK, Riegler J, Wu JC (2014) Stem cell imaging: from bench to bedside. Cell Stem Cell 14:431–444CrossRefGoogle Scholar
  4. 4.
    Wang J, Jokerst JV (2016) Stem cell imaging: tools to improve cell delivery and viability. Stem Cells Int 2016:9240652PubMedPubMedCentralGoogle Scholar
  5. 5.
    Jakobsen J (2001) Ultrasound contrast agents: clinical applications. Eur Radiol 11:1329–1337CrossRefGoogle Scholar
  6. 6.
    Ophir J, Parker KJ (1989) Contrast agents in diagnostic ultrasound. Ultrasound Med Biol 15:319–333CrossRefGoogle Scholar
  7. 7.
    Willmann JK, Van Bruggen N, Dinkelborg LM et al (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Porcel M, Gheysens O, Chen IY et al (2005) Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther 12:1142–1147CrossRefGoogle Scholar
  9. 9.
    Ma M, Chen H, Shi J (2015) Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications. Sci Bull 60:1170–1183CrossRefGoogle Scholar
  10. 10.
    Chen F, Ma M, Wang J et al (2017) Exosome-like silica nanoparticles: a novel ultrasound contrast agent for stem cell imaging. Nanoscale 9:402–411CrossRefGoogle Scholar
  11. 11.
    Lemaster JE, Chen F, Kim T et al (2018) Development of a trimodal contrast agent for acoustic and magnetic particle imaging of stem cells. ACS Appl Nano Mater 1:1321–1331CrossRefGoogle Scholar
  12. 12.
    Zhang K, Chen H, Guo X et al (2015) Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging. Sci Rep 5:8766–8776CrossRefGoogle Scholar
  13. 13.
    Chen F, Hableel G, Zhao ER et al (2018) Multifunctional nanomedicine with silica: role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci 521:261–279CrossRefGoogle Scholar
  14. 14.
    Jokerst JV, Khademi C, Gambhir SS (2013) Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Sci Transl Med 5:177ra135CrossRefGoogle Scholar
  15. 15.
    Jokerst JV, Thangaraj M, Kempen PJ et al (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6:5920–5930CrossRefGoogle Scholar
  16. 16.
    Lin CY, Chen F, Hariri A et al (2018) Photoacoustic imaging for noninvasive periodontal probing depth measurements. J Dent Res 97:23–30CrossRefGoogle Scholar
  17. 17.
    Xu MH, Wang LHV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101Google Scholar
  18. 18.
    Kim T, Lemaster JE, Chen F et al (2017) Photoacoustic imaging of human mesenchymal stem cells labeled with prussian blue-poly(l-lysine) nanocomplexes. ACS Nano 11:9022–9032CrossRefGoogle Scholar
  19. 19.
    Lemaster JE, Wang Z, Hariri A et al (2019) Gadolinium doping enhances the photoacoustic signal of synthetic melanin nanoparticles: a dual modality contrast agent for stem cell imaging. Chem Mater 31:251–259CrossRefGoogle Scholar
  20. 20.
    Chen F, Li G, Zhao ER et al (2018) Cellular toxicity of silicon carbide nanomaterials as a function of morphology. Biomaterials 179:60–70CrossRefGoogle Scholar
  21. 21.
    Arconada-Alvarez SJ, Lemaster JE, Wang JX et al (2017) The development and characterization of a novel yet simple 3D printed tool to facilitate phantom imaging of photoacoustic contrast agents. Photo-Dermatology 5:17–24Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Nanoengineering, Materials Science and Engineering ProgramUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of OphthalmologyStanford UniversityStanfordUSA
  3. 3.Department of RadiologyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations