Skip to main content

In Vitro Production of Zygotes by Electrofusion of Rice Gametes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2122))

Abstract

In angiosperms, fertilization and embryogenesis occur in the embryo sac, which is deeply embedded in ovular tissue. In vitro fertilization (IVF) systems using isolated gametes have been utilized to dissect postfertilization events in angiosperms, such as egg activation, zygotic development, and early embryogenesis. In addition, using IVF systems, interspecific zygotes and polyploid zygotes have been artificially produced, and their developmental profiles/mechanisms have been analyzed. Taken together, the IVF system can be considered a powerful technique for investigating the fertilization-induced developmental sequences in zygotes and generating new cultivars with desirable characteristics. Here, we describe the procedures for the isolation of rice gametes, electrofusion of gametes, and the culture of the produced zygotes and embryo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Guignard ML (1899) Sur les antherozoides et la double copulation sexuelle chez les vegetaux angiosperms. Rev Gén Bot 11:129–135

    Google Scholar 

  2. Nawaschin S (1898) Revision der Befruchtungsvorgange bei Lilium martagon und Fritillaria tenella. Bull Acad Imp Sci St-Pétersbourg 9:377–382

    Google Scholar 

  3. Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583

    CAS  Google Scholar 

  4. Russell SD (1992) Double fertilization. Int Rev Cytol 40:357–390

    Google Scholar 

  5. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) Generative cell specific 1 is essential for angiosperm fertilization. Nat Cell Biol 8:64–71

    CAS  PubMed  Google Scholar 

  6. Berger F (2011) Imaging fertilization in flowering plants, not so abominable after all. J Exp Bot 62:1651–1658

    CAS  PubMed  Google Scholar 

  7. Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T (2012) Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097

    CAS  PubMed  Google Scholar 

  8. Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014) Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat Commun 5:4645

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamamura Y, Nagahara S, Higashiyama T (2012) Double fertilization on the move. Curr Opin Plant Biol 15:70–77

    PubMed  Google Scholar 

  10. Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T (2014) Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat Commun 5:4722

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maruyama D, Völz R, Takeuchi H, Mori T, Igawa T, Kurihara D, Kawashima T, Ueda M, Ito M, Umeda M, Nishikawa S, Groß-Hardt R, Higashiyama T (2015) Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161(4):907–918

    CAS  PubMed  Google Scholar 

  12. Kranz E (1999) In vitro fertilization with isolated single gametes. Methods Mol Biol 111:259–267

    CAS  PubMed  Google Scholar 

  13. Okamoto T (2011) In vitro fertilization with isolated rice gametes: production of zygotes and zygote and embryo culture. Methods Mol Biol 710:17–27

    CAS  PubMed  Google Scholar 

  14. Wang YY, Kuang A, Russell SD, Tian HQ (2006) In vitro fertilization as a tool for investigating sexual reproduction of angiosperm. Sex Plant Reprod 19:103–115

    Google Scholar 

  15. Kranz E, Bautor J, Lörz H (1991) In vitro fertilization of single, isolated gametes of maize mediated electrofusion. Sex Plant Reprod 4:12–16

    Google Scholar 

  16. Uchiumi T, Komatsu S, Koshiba T, Okamoto T (2006) Isolation of gametes and central cells from Oryza sativa L. Sex Plant Reprod 19:37–45

    Google Scholar 

  17. Uchiumi T, Uemura I, Okamoto T (2007) Establishment of an in vitro fertilization system in rice (Oryza sativa L.). Planta 226:581–589

    CAS  PubMed  Google Scholar 

  18. Faure JE, Digonnet C, Dumas C (1994) An in vitro system for adhesion and fusion of maize gametes. Science 263:1598–1600

    CAS  PubMed  Google Scholar 

  19. Kranz E, Lörz H (1994) In vitro fertilization of maize by single egg and sperm cell protoplast fusion mediated by high calcium and high pH. Zygote 2:125–128

    CAS  PubMed  Google Scholar 

  20. Khalequzzaman M, Haq N (2005) Isolation and in vitro fusion of egg and sperm cells in Oryza sativa. Plant Physiol Biochem 43:69–75

    CAS  PubMed  Google Scholar 

  21. Sun M, Yang H, Zhou C, Koop H-U (1995) Single-pair fusion of various combinations between female gametoplasts and other protoplasts in Nicotiana tabacum. Acta Bot Sin 37:1–6

    Google Scholar 

  22. Tian HQ, Russell SD (1997) Micromanipulation of male and female gametes of Nicotiana tabacum: II. Preliminary attempts for in vitro fertilization and egg cell culture. Plant Cell Rep 16:657–661

    CAS  PubMed  Google Scholar 

  23. Peng XB, Sun MX, Yang HY (2005) A novel in vitro system for gamete fusion in maize. Cell Res 15:734–738

    PubMed  Google Scholar 

  24. Antoine AF, Faure JE, Dumas C, Feijo JA (2001) Differential contribution of cytoplasmic Ca2+ and Ca2+ influx to gamete fusion and egg activation in maize. Nat Cell Biol 3:1120–1123

    CAS  PubMed  Google Scholar 

  25. Sun MX, Moscatelli A, Yang HY, Cresti M (2002) In vitro double fertilization in Nicotiana tabacum (L.): polygamy compared with selected single pair somatic protoplast and chloroplast fusions. Sex Plant Reprod 13:113–117

    Google Scholar 

  26. Kranz E, Lörz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746

    PubMed  PubMed Central  Google Scholar 

  27. Maryenti T, Kato N, Ichikawa M, Okamoto T (2019) Establishment of an in vitro fertilization system in wheat (Triticum aestivum L.). Plant Cell Physiol 60(4):835–843. https://doi.org/10.1093/pcp/pcy250

    Article  CAS  PubMed  Google Scholar 

  28. Faure JE, Mogensen HL, Dumas C, Lörz H, Kranz E (1993) Karyogamy after electrofusion of single egg and sperm cell protoplasts from maize: cytological evidence and time course. Plant Cell 5:747–755

    PubMed  PubMed Central  Google Scholar 

  29. Ohnishi Y, Hoshino R, Okamoto T (2014) Dynamics of male and female chromatin during karyogamy in rice zygotes. Plant Physiol 165:1533–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohnishi Y, Okamoto T (2017) Nuclear migration during karyogamy in rice zygotes is mediated by continuous convergence of actin meshwork toward the egg nucleus. J Plant Res 130:339–348

    PubMed  Google Scholar 

  31. Kranz E, von Wiegen P, Lörz H (1995) Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J 8:9–23

    Google Scholar 

  32. Sato A, Toyooka K, Okamoto T (2010) Asymmetric cell division of rice zygotes located in embryo sac and produced by in vitro fertilization. Sex Plant Reprod 23:211–217

    PubMed  Google Scholar 

  33. Rahman M, Toda E, Kobayashi M, Kudo T, Koshimizu M, Takahara M, Iwami M, Watanabe Y, Sekimoto H, Yano K, Okamoto T (2019) Expression of genes from paternal alleles in rice zygotes and involvement of OsASGR-BBML1 in initiation of zygotic development. Plant Cell Physiol 60:725–737. https://doi.org/10.1093/pcp/pcy030

    Article  CAS  PubMed  Google Scholar 

  34. Scholten S, Lörz H, Kranz E (2002) Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant J 32:221–231

    CAS  PubMed  Google Scholar 

  35. Hoshino Y, Scholten S, von Wiegen P, Lörz H, Kranz E (2004) Fertilization induced changes in the microtubular architecture of the maize egg cell and zygote—an immunocytochemical approach adapted to single cells. Sex Plant Reprod 17:89–95

    CAS  Google Scholar 

  36. Nakajima K, Uchiumi T, Okamoto T (2010) Positional relationship between the gamete fusion site and the first division plane in the rice zygote. J Exp Bot 61:3101–3105

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Toda E, Ohnishi Y, Okamoto T (2016) Development of polyspermic rice zygotes. Plant Physiol 171:206–214

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Toda E, Ohnishi Y, Okamoto T (2018) Effects of an imbalanced parental genome ratio on development of rice zygotes. J Exp Bot 69:2609–2619

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sukawa Y, Okamoto T (2018) Cell cycle in egg cell and its progression during zygotic development in rice. Plant Reprod 31:107–116

    PubMed  Google Scholar 

  40. Jahnke S, Scholten S (2009) Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 19:1677–1681

    CAS  PubMed  Google Scholar 

  41. Koiso N, Toda E, Ichikawa M, Kato N, Okamoto T (2017) Development of gene expression system in egg cells and zygotes isolated from rice and maize. Plant Direct 1:e00010

    PubMed  PubMed Central  Google Scholar 

  42. Toda E, Koiso N, Takebayashi A, Ichikawa M, Kiba T, Osakabe K, Osakabe Y, Sakakibara H, Kato N, Okamoto T (2019) An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat Plants 5:363–368. https://doi.org/10.1038/s41477-019-0386-z

    Article  CAS  PubMed  Google Scholar 

  43. Kumlehn J, Lörz H, Kranz E (1998) Differentiation of isolated wheat zygotes into embryos and normal plants. Planta 205:327–333

    CAS  Google Scholar 

  44. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rahman, M.H., Toda, E., Okamoto, T. (2020). In Vitro Production of Zygotes by Electrofusion of Rice Gametes. In: Bayer, M. (eds) Plant Embryogenesis. Methods in Molecular Biology, vol 2122. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0342-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0342-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0341-3

  • Online ISBN: 978-1-0716-0342-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics