Skip to main content

Cell-Type Enrichment Analysis of Bulk Transcriptomes Using xCell

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

Tissues are a complex milieu of cell types of different lineages and subtypes, each with its own unique transcriptomic profile. Bulk transcriptome profiling is therefore the sum of the cell-type-specific gene expression weighted by cell-type proportion in the given sample. Deconvolution of gene expression profiles allows to reconstruct the cellular composition of tissues. xCell is a robust computational method that converts gene expression profiles to enrichment scores of 64 immune and stroma cell types across samples. Here, we described the method, discuss correct usage, and demonstrate an analysis of a cohort of peripheral blood mononuclear cells (PBMC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aran D, Sirota M, Butte AJ (2015) Systematic pan-cancer analysis of tumour purity. Nat Commun 6:8971. https://doi.org/10.1038/ncomms9971

    Article  CAS  Google Scholar 

  2. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Sci (New York, NY) 313:1960–1964. https://doi.org/10.1126/science.1129139

    Article  CAS  Google Scholar 

  3. Carr EJ, Dooley J, Garcia-Perez JE et al (2016) The cellular composition of the human immune system is shaped by age and cohabitation. Nat Immunol 17:461–468. https://doi.org/10.1038/ni.3371

    Article  CAS  Google Scholar 

  4. Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  Google Scholar 

  5. Aran D, Butte AJ (2016) Digitally deconvolving the tumor microenvironment. Genome Biol 17:175. https://doi.org/10.1186/s13059-016-1036-7

    Article  Google Scholar 

  6. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

    Article  Google Scholar 

  7. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112. https://doi.org/10.1038/nature08460

    Article  CAS  Google Scholar 

  8. Bhattacharya S, Andorf S, Gomes L et al (2014) ImmPort: disseminating data to the public for the future of immunology. Immunol Res 58:234–239. https://doi.org/10.1007/s12026-014-8516-1

    Article  CAS  Google Scholar 

  9. Whiting CC, Siebert J, Newman AM et al (2015) Large-scale and comprehensive immune profiling and functional analysis of normal human aging. PLoS One 10:e0133627. https://doi.org/10.1371/journal.pone.0133627

    Article  Google Scholar 

  10. Aran D, Looney AP, Liu L et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20:163–172. https://doi.org/10.1038/s41590-018-0276-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dvir Aran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aran, D. (2020). Cell-Type Enrichment Analysis of Bulk Transcriptomes Using xCell. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics