Skip to main content

EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

Gene expression profiling is nowadays routinely performed on clinically relevant samples (e.g., from tumor specimens). Such measurements are often obtained from bulk samples containing a mixture of cell types. Knowledge of the proportions of these cell types is crucial as they are key determinants of the disease evolution and response to treatment. Moreover, heterogeneity in cell type proportions across samples is an important confounding factor in downstream analyses.

Many tools have been developed to estimate the proportion of the different cell types from bulk gene expression data. Here, we provide guidelines and examples on how to use these tools, with a special focus on our recent computational method EPIC (Estimating the Proportions of Immune and Cancer cells). EPIC includes RNA-seq-based gene expression reference profiles from immune cells and other nonmalignant cell types found in tumors. EPIC can additionally manage user-defined gene expression reference profiles. Some unique features of EPIC include the ability to account for an uncharacterized cell type, the introduction of a renormalization step to account for different mRNA content in each cell type, and the use of single-cell RNA-seq data to derive biologically relevant reference gene expression profiles. EPIC is available as a web application (http://epic.gfellerlab.org) and as an R-package (https://github.com/GfellerLab/EPIC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  Google Scholar 

  2. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80. https://doi.org/10.1126/science.aaa6204

    Article  CAS  Google Scholar 

  3. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  Google Scholar 

  4. Croci DO, Zacarías Fluck MF, Rico MJ et al (2007) Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother 56:1687–1700. https://doi.org/10/fj4m65

    Article  Google Scholar 

  5. Shen-Orr SS, Gaujoux R (2013) Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol 25:571–578. https://doi.org/10.1016/j.coi.2013.09.015

    Article  CAS  Google Scholar 

  6. Hagenauer MH, Schulmann A, Li JZ et al (2018) Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis. PLoS One 13:e0200003. https://doi.org/10.1371/journal.pone.0200003

    Article  Google Scholar 

  7. Repsilber D, Kern S, Telaar A et al (2010) Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach. BMC Bioinformatics 11:1. https://doi.org/10.1186/1471-2105-11-27

    Article  Google Scholar 

  8. Yoshihara K, Shahmoradgoli M, Martínez E et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  Google Scholar 

  9. Zhong Y, Wan Y-W, Pang K et al (2013) Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinformatics 14:1. https://doi.org/10.1186/1471-2105-14-89

    Google Scholar 

  10. Quon G, Haider S, Deshwar AG et al (2013) Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Med 5:29. https://doi.org/10.1186/gm433

    Article  Google Scholar 

  11. Gong T, Szustakowski JD (2013) DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29:1083–1085. https://doi.org/10.1093/bioinformatics/btt090

    Article  CAS  Google Scholar 

  12. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  Google Scholar 

  13. Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. https://doi.org/10.1186/s13059-016-1070-5

    Article  Google Scholar 

  14. Li B, Severson E, Pignon J-C et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174. https://doi.org/10.1186/s13059-016-1028-7

    Article  Google Scholar 

  15. Danaher P, Warren S, Dennis L et al (2017) Gene expression markers of Tumor Infiltrating Leukocytes. J Immunother Cancer 5:18. https://doi.org/10.1186/s40425-017-0215-8

    Article  Google Scholar 

  16. Racle J, Jonge K, de Baumgaertner P et al (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. elife 6:e26476. https://doi.org/10.7554/eLife.26476

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tappeiner E, Finotello F, Charoentong P et al (2017) TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics 33:3140–3141. https://doi.org/10.1093/bioinformatics/btx377

    Article  CAS  Google Scholar 

  18. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Finotello F, Mayer C, Plattner C et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11:34. https://doi.org/10.1186/s13073-019-0638-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monaco G, Lee B, Xu W et al (2019) RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep 26:1627–1640.e7. https://doi.org/10/gft8b3

    Article  CAS  Google Scholar 

  21. Frishberg A, Peshes-Yaloz N, Cohn O et al (2019) Cell composition analysis of bulk genomics using single-cell data. Nat Methods 16:327–332. https://doi.org/10/gfw8kp

    Article  CAS  Google Scholar 

  22. Hunt GJ, Freytag S, Bahlo M, Gagnon-Bartsch JA (2019) dtangle: accurate and robust cell type deconvolution. Bioinformatics 35:2093–2099. https://doi.org/10.1093/bioinformatics/bty926

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Park J, Susztak K et al (2019) Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun 10:380. https://doi.org/10/gfxgjq

    Article  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  Google Scholar 

  25. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112. https://doi.org/10.1038/nature08460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finotello F, Trajanoski Z (2018) Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother 67:1031–1040. https://doi.org/10.1007/s00262-018-2150-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petitprez F, Sun C-M, Lacroix L et al (2018) Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine. Front Oncol 8:390. https://doi.org/10.3389/fonc.2018.00390

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schelker M, Feau S, Du J et al (2017) Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun 8:2032. https://doi.org/10.1038/s41467-017-02289-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liebner DA, Huang K, Parvin JD (2014) MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics 30:682–689. https://doi.org/10.1093/bioinformatics/btt566

    Article  CAS  PubMed  Google Scholar 

  30. Sturm G, Finotello F, Petitprez F et al (2019) Comprehensive evaluation of cell-type quantification methods for immuno-oncology. Bioinformatics 35:i436–i445. https://doi.org/10.1093/bioinformatics/btz363

    Article  PubMed  PubMed Central  Google Scholar 

  31. Angelova M, Charoentong P, Hackl H et al (2015) Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 16:64. https://doi.org/10.1186/s13059-015-0620-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337. https://doi.org/10.1038/nature11252

    Article  CAS  PubMed Central  Google Scholar 

  33. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290

    Article  PubMed  Google Scholar 

  34. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  36. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kolesnikov N, Hastings E, Keays M et al (2015) ArrayExpress update—simplifying data submissions. Nucleic Acids Res 43:D1113–D1116. https://doi.org/10.1093/nar/gku1057

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Baran J, Cros A et al (2011) International cancer genome consortium data portal—a one-stop shop for cancer genomics data. Database J Biol Databases Curation 2011:bar026. https://doi.org/10.1093/database/bar026

    Article  CAS  Google Scholar 

  39. Grossman RL, Heath AP, Ferretti V et al (2016) Toward a shared vision for cancer genomic data. N Engl J Med 375:1109–1112. https://doi.org/10/gfxgjx

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gfeller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Racle, J., Gfeller, D. (2020). EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics