Skip to main content

In Silico Cell-Type Deconvolution Methods in Cancer Immunotherapy

  • Protocol
  • First Online:
Bioinformatics for Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

Several computational methods have been proposed to infer the cellular composition from bulk RNA-seq data of a tumor biopsy sample. Elucidating interactions in the tumor microenvironment can yield unique insights into the status of the immune system. In immuno-oncology, this information can be crucial for deciding whether the immune system of a patient can be stimulated to target the tumor. Here, we shed a light on the working principles, capabilities, and limitations of the most commonly used methods for cell-type deconvolution in immuno-oncology and offer guidelines for method selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  2. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14:717–734. https://doi.org/10.1038/nrclinonc.2017.101

    Article  CAS  PubMed  Google Scholar 

  3. Friedman AA, Letai A, Fisher DE, Flaherty KT (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15:747–756. https://doi.org/10.1038/nrc4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petitprez F, Sun CM, Lacroix L (2018) Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine. Front Oncol 8:390. https://doi.org/10.3389/fonc.2018.00390

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lambrechts D, Wauters E, Boeckx B et al (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24:1277–1289. https://doi.org/10.1038/s41591-018-0096-5

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  PubMed Central  Google Scholar 

  7. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Finotello F, Mayer C, Plattner C et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11:34

    Article  PubMed  PubMed Central  Google Scholar 

  9. Racle J, de Jonge K, Baumgaertner P et al (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. elife 6:e26476. https://doi.org/10.7554/eLife.26476

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li B, Severson E, Pignon J-C et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174. https://doi.org/10.1186/s13059-016-1028-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Petitprez F, Vano YA, Becht E et al (2018) Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother 67:981–988. https://doi.org/10.1007/s00262-017-2058-z

    Article  PubMed  Google Scholar 

  12. Finotello F, Trajanoski Z (2018) Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother 67:1031–1040. https://doi.org/10.1007/s00262-018-2150-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K (2018) Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics 34:1969–1979. https://doi.org/10.1093/bioinformatics/bty019

    Article  PubMed  Google Scholar 

  14. Newman AM, Alizadeh AA (2016) High-throughput genomic profiling of tumor-infiltrating leukocytes. Curr Opin Immunol 41:77–84. https://doi.org/10.1016/j.coi.2016.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. https://doi.org/10.1186/s13059-016-1070-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Forrest ARR, Kawaji H, Rehli M et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470. https://doi.org/10.1038/nature13182

    Article  CAS  PubMed  Google Scholar 

  18. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  Google Scholar 

  19. Fernández JM, de la Torre V, Richardson D et al (2016) The BLUEPRINT data analysis portal. Cell Syst 3:491–495.e5. https://doi.org/10.1016/j.cels.2016.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abbas AR, Baldwin D, Ma Y et al (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6:319–331. https://doi.org/10.1038/sj.gene.6364173

    Article  CAS  PubMed  Google Scholar 

  21. Mabbott NA, Baillie JK, Brown H et al (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632. https://doi.org/10.1186/1471-2164-14-632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Novershtern N, Subramanian A, Lawton LN et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309. https://doi.org/10.1016/j.cell.2011.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA CIBERSORT website. In: CIBERSORT. https://cibersort.stanford.edu/. Accessed 20 Oct 2018

  24. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127. https://doi.org/10.1093/biostatistics/kxj037

    Article  PubMed  Google Scholar 

  25. Sturm et al (2019) Comprehensive evaluation of computational cell-type quantification methods for immuno-oncology. Bioinformatics 35(14):i436–i445. https://doi.org/10.1093/bioinformatics/btz363

    Article  PubMed  PubMed Central  Google Scholar 

  26. Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140:22–30. https://doi.org/10.1111/imm.12117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villani A-C, Satija R, Reynolds G et al (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356. https://doi.org/10.1126/science.aah4573

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sade-Feldman M, Yizhak K, Bjorgaard SL et al (2019) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 176:404. https://doi.org/10.1016/j.cell.2018.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Azizi E, Carr AJ, Plitas G, et al Single-cell immune map of breast carcinoma reveals diverse phenotypic states driven by the tumor microenvironment. https://doi.org/10.1101/221994

  30. Guo X, Zhang Y, Zheng L et al (2018) Global characterization of T cells in non-small cell lung cancer by single-cell sequencing. Nat Med 24:978–985. https://doi.org/10.1038/s41591-018-0045-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus List .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sturm, G., Finotello, F., List, M. (2020). In Silico Cell-Type Deconvolution Methods in Cancer Immunotherapy. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics