Skip to main content

Chromatin Pull-Down Methodology Based on DNA Triple Helix Formation

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2119))

Abstract

Identification of the protein complexes associated with defined DNA sequence elements is essential to understand the numerous transactions in which DNA is involved, such as replication, repair, transcription, and chromatin dynamics. Here we describe two protocols, IDAP (Isolation of DNA Associated Proteins) and CoIFI (Chromatin-of-Interest Fragment Isolation), that allow for isolating DNA/protein complexes (i.e., nucleoprotein elements) by means of a DNA capture tool based on DNA triple helix (triplex) formation. Typically, IDAP is used to capture proteins that bind to a given DNA element of interest (e.g., a specific DNA sequence, an unusual DNA structure, a DNA lesion) that can be introduced at will into plasmids. The plasmids are immobilized by means of a triplex-forming probe on magnetic beads and incubated in nuclear extracts; by using in parallel a control plasmid (that lacks the DNA element of interest), proteins that preferentially bind to the DNA element of interest are captured and identified by mass spectrometry. Similarly, CoIFI also uses a triplex-forming probe to capture a specific chromatin fragment from a cultured cell line that has been engineered to contain multiple copies of the DNA element of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim T-K, Shiekhattar R (2015) Architectural and functional commonalities between enhancers and promoters. Cell 162:948–959. https://doi.org/10.1016/j.cell.2015.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sirbu BM, Couch FB, Feigerle JT et al (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25:1320–1327. https://doi.org/10.1101/gad.2053211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kliszczak AE, Rainey MD, Harhen B et al (2011) DNA mediated chromatin pull-down for the study of chromatin replication. Sci Rep 1:95. https://doi.org/10.1038/srep00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antão JM, Mason JM, Déjardin J, Kingston RE (2012) Protein landscape at drosophila melanogaster telomere-associated sequence repeats. Mol Cell Biol 32:2170–2182. https://doi.org/10.1128/MCB.00010-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ide S, Déjardin J (2015) End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter. Nat Commun 6:6674. https://doi.org/10.1038/ncomms7674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X, Zhang Y, Chen Y et al (2017) In situ capture of chromatin interactions by biotinylated dCas9. Cell 170:1028–1043.e19. https://doi.org/10.1016/j.cell.2017.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90:1117–1130. https://doi.org/10.1016/j.biochi.2008.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duca M, Vekhoff P, Oussedik K et al (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36:5123–5138. https://doi.org/10.1093/nar/gkn493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nielsen PE, Egholm M (2001) Strand displacement recognition of mixed adenine-cytosine sequences in double stranded DNA by thymine-guanine PNA (peptide nucleic acid). Bioorg Med Chem 9:2429–2434

    Article  CAS  Google Scholar 

  10. Sørensen MD, Meldgaard M, Raunkjaer M et al (2000) Branched oligonucleotides containing bicyclic nucleotides as branching points and DNA or LNA as triplex forming branch. Bioorg Med Chem Lett 10:1853–1856

    Article  Google Scholar 

  11. Sun JS, François JC, Montenay-Garestier T et al (1989) Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc Natl Acad Sci U S A 86:9198–9202

    Article  CAS  Google Scholar 

  12. Takasugi M, Guendouz A, Chassignol M et al (1991) Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A 88:5602–5606

    Article  CAS  Google Scholar 

  13. Brunet E, Corgnali M, Perrouault L et al (2005) Intercalator conjugates of pyrimidine locked nucleic acid-modified triplex-forming oligonucleotides: improving DNA binding properties and reaching cellular activities. Nucleic Acids Res 33:4223–4234. https://doi.org/10.1093/nar/gki726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Isogawa A, Fuchs RP, Fujii S (2018) Versatile and efficient chromatin pull-down methodology based on DNA triple helix formation. Sci Rep 8:5925. https://doi.org/10.1038/s41598-018-24417-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246:280–289. https://doi.org/10.1006/excr.1998.4319

    Article  CAS  PubMed  Google Scholar 

  16. Georgakilas AG, Martin OA, Bonner WM (2017) p21: a two-faced genome guardian. Trends Mol Med 23:310–319. https://doi.org/10.1016/j.molmed.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  17. Iyer RR, Pluciennik A, Napierala M, Wells RD (2015) DNA triplet repeat expansion and mismatch repair. Annu Rev Biochem 84:199–226. https://doi.org/10.1146/annurev-biochem-060614-034010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert P. Fuchs or Shingo Fujii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Isogawa, A., Fuchs, R.P., Fujii, S. (2020). Chromatin Pull-Down Methodology Based on DNA Triple Helix Formation. In: Hanada, K. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 2119. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0323-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0323-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0322-2

  • Online ISBN: 978-1-0716-0323-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics