Skip to main content

Introduction and Perspectives of DNA Electrophoresis

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2119))

Abstract

Gel electrophoresis of DNA is one of the most frequently used techniques in molecular biology. Typically, it is used in the following: the analysis of in vitro reactions and purification of DNA fragments, analysis of PCR reactions, characterization of enzymes involved in DNA reactions, and sequencing. With some ingenuity gel electrophoresis of DNA is also used for the analysis of cellular biochemical reactions. For example, DNA breaks that accumulate in cells are analyzed by the comet assay and pulsed-field gel electrophoresis (PFGE). Furthermore, DNA replication intermediates are analyzed with two-dimensional (2D) gel electrophoresis. Moreover, several new methods for analyzing various chromosomal functions in cells have been developed. In this chapter, a brief introduction to these is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta 269(2):192–200

    Article  CAS  PubMed  Google Scholar 

  2. Roberts GA, Dryden DT (2013) DNA electrophoresis: historical and theoretical perspectives. Methods Mol Biol 1054:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Noites IS, O'Kennedy RD, Levy MS, Abidi N, Keshavarz-Moore E (1999) Rapid quantitation and monitoring of plasmid DNA using an ultrasensitive DNA-binding dye. Biotechnol Bioeng 66(3):195–201

    Article  CAS  PubMed  Google Scholar 

  4. Makovets S (2013) Basic DNA electrophoresis in molecular cloning: a comprehensive guide for beginners. Methods Mol Biol 1054:11–43

    Article  CAS  PubMed  Google Scholar 

  5. Sambrook J, Russell DW (2006) Alkaline agarose gel electrophoresis. CSH Protoc 2006(1)

    Article  PubMed  Google Scholar 

  6. Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, Maas A, Essers J, Hickson ID, Kanaar R (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14(11):1096–1104

    Article  CAS  PubMed  Google Scholar 

  7. Allers T, Lichten M (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106(1):47–57

    Article  CAS  PubMed  Google Scholar 

  8. Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106(1):59–70

    Article  CAS  PubMed  Google Scholar 

  9. Lerman LS, Frisch HL (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21(5):995–997

    Article  CAS  PubMed  Google Scholar 

  10. Zimm BH, Levene SD (1992) Problems and prospects in the theory of gel electrophoresis of DNA. Q Rev Biophys 25(2):171–204

    Article  CAS  PubMed  Google Scholar 

  11. Stellwagen NC (2009) Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution. Electrophoresis 30(Suppl 1):S188–S195

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cebrian J, Kadomatsu-Hermosa MJ, Castan A, Martinez V, Parra C, Fernandez-Nestosa MJ, Schaerer C, Martinez-Robles ML, Hernandez P, Krimer DB, Stasiak A, Schvartzman JB (2015) Electrophoretic mobility of supercoiled catenated and knotted DNA molecules. Nucleic Acids Res 43(4):e24

    Article  PubMed  CAS  Google Scholar 

  13. Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19(3):339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ashley RE, Dittmore A, McPherson SA, Turnbough CL Jr, Neuman KC, Osheroff N (2017) Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res 45(16):9611–9624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan TL, Essers J, Citterio E, Swagemakers SM, de Wit J, Benson FE, Hoeijmakers JH, Kanaar R (1999) Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation. Curr Biol 9(6):325–328

    Article  CAS  PubMed  Google Scholar 

  16. Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, Carotenuto W, Saponaro M, Brambati A, Cocito A, Foiani M, Liberi G (2012) Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151(4):835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kolesar JE, Wang CY, Taguchi YV, Chou SH, Kaufman BA (2013) Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Res 41(4):e58

    Article  CAS  PubMed  Google Scholar 

  18. Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123(1):291–298

    Article  CAS  PubMed  Google Scholar 

  19. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  20. Kohara A, Matsumoto M, Hirose A, Hayashi M, Honma M, Suzuki T (2018) Mutagenic properties of dimethylaniline isomers in mice as evaluated by comet, micronucleus and transgenic mutation assays. Genes Environ 40:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Warpman Berglund U, Sanjiv K, Gad H, Kalderen C, Koolmeister T, Pham T, Gokturk C, Jafari R, Maddalo G, Seashore-Ludlow B, Chernobrovkin A, Manoilov A, Pateras IS, Rasti A, Jemth AS, Almlof I, Loseva O, Visnes T, Einarsdottir BO, Gaugaz FZ, Saleh A, Platzack B, Wallner OA, Vallin KS, Henriksson M, Wakchaure P, Borhade S, Herr P, Kallberg Y, Baranczewski P, Homan EJ, Wiita E, Nagpal V, Meijer T, Schipper N, Rudd SG, Brautigam L, Lindqvist A, Filppula A, Lee TC, Artursson P, Nilsson JA, Gorgoulis VG, Lehtio J, Zubarev RA, Scobie M, Helleday T (2016) Validation and development of MTH1 inhibitors for treatment of cancer. Ann Oncol 27(12):2275–2283

    Article  CAS  PubMed  Google Scholar 

  22. Bhagwat N, Olsen AL, Wang AT, Hanada K, Stuckert P, Kanaar R, D'Andrea A, Niedernhofer LJ, McHugh PJ (2009) XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair. Mol Cell Biol 29(24):6427–6437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kasamoto S, Masumori S, Tanaka J, Ueda M, Fukumuro M, Nagai M, Yamate J, Hayashi M (2017) Reference control data obtained from an in vivo comet-micronucleus combination assay using Sprague Dawley rats. Exp Toxicol Pathol 69(4):187–191

    Article  PubMed  Google Scholar 

  24. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sternberg N (1990) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci U S A 87(1):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305(5931):189–193

    Article  CAS  PubMed  Google Scholar 

  27. Ferrari RG, Panzenhagen PHN, Conte-Junior CA (2017) Phenotypic and genotypic eligible methods for Salmonella Typhimurium source tracking. Front Microbiol 8:2587

    Article  PubMed  PubMed Central  Google Scholar 

  28. De Silva IU, McHugh PJ, Clingen PH, Hartley JA (2000) Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 20(21):7980–7990

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hanada K, Uchida T, Tsukamoto Y, Watada M, Yamaguchi N, Yamamoto K, Shiota S, Moriyama M, Graham DY, Yamaoka Y (2014) Helicobacter pylori infection introduces DNA double-strand breaks in host cells. Infect Immun 82(10):4182–4189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fukuda E, Kaminska KH, Bujnicki JM, Kobayashi I (2008) Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 9(11):R163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Keyamura K, Arai K, Hishida T (2016) Srs2 and Mus81-Mms4 prevent accumulation of toxic inter-homolog recombination intermediates. PLoS Genet 12(7):e1006136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kawashima Y, Yamaguchi N, Teshima R, Narahara H, Yamaoka Y, Anai H, Nishida Y, Hanada K (2017) Detection of DNA double-strand breaks by pulsed-field gel electrophoresis. Genes Cells 22(1):84–93

    Article  CAS  PubMed  Google Scholar 

  33. Nassonova ES (2008) Pulsed field gel electrophoresis: theory, instruments and application. Cell Tissue Biol 2:557

    Article  Google Scholar 

  34. Denker A, de Laat W (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30(12):1357–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gregoire MC, Leduc F, Morin MH, Cave T, Arguin M, Richter M, Jacques PE, Boissonneault G (2018) The DNA double-strand “breakome” of mouse spermatids. Cell Mol Life Sci 75(15):2859–2872

    Article  CAS  PubMed  Google Scholar 

  36. Isogawa A, Fuchs RP, Fujii S (2018) Versatile and efficient chromatin pull-down methodology based on DNA triple helix formation. Sci Rep 8(1):5925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Moller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, Maretty L, Hansen AJ, Snyder MP, Pilegaard H, Lam HYK, Regenberg B (2018) Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun 9(1):1069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Shiizaki K, Kawanishi M, Yagi T (2017) Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ 39:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kanaly RA, Hanaoka T, Sugimura H, Toda H, Matsui S, Matsuda T (2006) Development of the adductome approach to detect DNA damage in humans. Antioxid Redox Signal 8(5–6):993–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dominic James, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiro Hanada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hanada, K. (2020). Introduction and Perspectives of DNA Electrophoresis. In: Hanada, K. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 2119. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0323-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0323-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0322-2

  • Online ISBN: 978-1-0716-0323-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics