Skip to main content

Analysis of Base Excision and Single-Strand Break Repair Activities in Trypanosomatid Extracts

Part of the Methods in Molecular Biology book series (MIMB,volume 2116)

Abstract

Cellular DNA is inherently unstable, subject to both spontaneous hydrolysis and attack by a range of exogenous and endogenous chemicals as well as physical agents such as ionizing and ultraviolet radiation. For parasitic protists, where an inoculum of infectious parasites is typically small and natural infections are often chronic with low parasitemia, they are also vulnerable to DNA damaging agents arising from innate immune defenses. The majority of DNA damage consists of relatively minor changes to the primary structure of the DNA, such as base deamination, oxidation, or alkylation and scission of the phosphodiester backbone. Yet these small changes can have serious consequences, often being mutagenic or cytotoxic. Cells have therefore evolved efficient mechanisms to repair such damage, with base excision and single strand break repair playing the primary role here. In this chapter we describe a method for analyzing the activity from cell extracts of various enzymes involved in the base excision and single strand break repair pathways of trypanosomatid parasites.

Key words

  • AP endonuclease
  • Base excision repair
  • Cell extracts
  • DNA repair
  • Glycosylase
  • In vitro repair assay
  • Leishmania
  • Polynucleotide kinase/phosphatase
  • Single-strand break repair
  • Trypanosoma

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0294-2_22
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0294-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bern C (2015) Chagas’ disease. N Engl J Med 373:456–466

    CAS  CrossRef  Google Scholar 

  2. Rao SPS, Barrett MP, Dranoff G et al (2019) Drug discovery for kinetoplastid diseases: future directions. ACS Infect Dis 5:152–157

    CAS  CrossRef  Google Scholar 

  3. Ponte-Sucre A, Gamarro F, Dujardin JC et al (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11:e0006052

    CrossRef  Google Scholar 

  4. Jaskowska E, Butler C, Preston G, Kelly S (2015) Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog 11:e1004484

    CrossRef  Google Scholar 

  5. Genois MM, Paquet ER, Laffitte MC et al (2014) DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol Mol Biol Rev 78:40–73

    CrossRef  Google Scholar 

  6. Yagüe-Capilla M, Garcia-Caballero D, Aguilar-Pereyra F et al (2019) Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei. Free Radic Biol Med 131:59–71

    CrossRef  Google Scholar 

  7. Vieira-da-Rocha JP, Passos-Silva DG, Mendes IC et al (2019) The DNA damage response is developmentally regulated in the African trypanosome. DNA Repair 73:78–90

    CAS  CrossRef  Google Scholar 

  8. Garcia JB, Rocha JP, Coasta-Silva HM et al (2016) Leishmania major and Trypanosoma cruzi present distinct DNA damage responses. Mol Biochem Parasitol 207:23–32

    CAS  CrossRef  Google Scholar 

  9. Castillo-Acosta VM, Aguilar-Pereya F, Bart J-M et al (2012) Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei. DNA Repair 11:986–995

    CAS  CrossRef  Google Scholar 

  10. McCulloch R, Cobbold CA, Figueiredo L et al (2018) Emerging challenges in understanding trypanosome antigenic variation. Emerg Top Life Sci 1:585–592

    Google Scholar 

  11. Laffitte MN, Leprohon P, Papadopoulou B, Ouellette M (2016) Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res 5:2350

    CrossRef  Google Scholar 

  12. Bussotti G, Gouzelou E, Côrtes Boité M et al (2018) Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability and telomeric amplification. MBio 9:e01399–e01318

    CrossRef  Google Scholar 

  13. Benz C, Dondelinger F, McKean PG, Urbaniak MD (2017) Cell cycle synchronization of Trypanosoma brucei by centrifugal counter-flow elutriation reveals the timing of nuclear and kinetoplast replication. Sci Rep 7:17599

    CrossRef  Google Scholar 

  14. Beneke T, Madden R, Makin L et al (2017) A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R Soc Open Sci 4:170095

    CrossRef  Google Scholar 

  15. Lander N, Li ZH, Niyogi S, Docampo R (2015) CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. MBio 6:e1012

    CrossRef  Google Scholar 

  16. Das BB, Sen N, Roy A, DesGupta SB, Ganguly A, Mohata BC, Dinda B, Majumder HK (2006) Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res 34:1121–1132

    CAS  CrossRef  Google Scholar 

  17. Ponce I, Aldunate C, Valenzuela L, Sepúlveda S, Garrido G, Kemmerling U, Cabrera G, Galanti N (2017) A flap endonuclease (TcFEN1) is involved in Trypanosoma cruzi cell proliferation, DNA repair and parasite survival. J Cell Biochem 118:1722–1732

    CAS  CrossRef  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  CrossRef  Google Scholar 

  19. Peña-Diaz J, Akbari M, Sundheim O, Farez-Vidal ME, Andersen S, Sneve R, González-Pacanowska D, Kroka HE, Slupphaug G (2004) Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs exclusively via short patch base excision repair. J Mol Biol 342:787–799

    CrossRef  Google Scholar 

  20. Charret KS, Requena CE, Castillo-Acosta VM, Ruiz-Pérez LM, González-Pacanowska D, Vidal AE (2012) Trypanosoma brucei AP endonuclease 1 has a major role in the repair of abasic sites and protection against DNA-damaging agents. DNA Repair 11:53–64

    CAS  CrossRef  Google Scholar 

  21. Ormeño F, Barrientos C, Ramirez S, Ponce I, Valenzuela L, Sepúlveda S, Bitar M, Kemmerling U, Machado RM, Cabrera G, Galanti N (2016) Expression and the peculiar enzymatic behavior of the Trypanosoma cruzi NTH1 DNA glycosylase. PLoS One 11:e0157270

    CrossRef  Google Scholar 

  22. Dobson CJ, Allinson SL (2006) The phosphatase activity of mammalian polynucleotide kinase takes precedence over its kinase activity repair of single strand breaks. Nucleic Acids Res 34:2230–2237

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

D.M.K. is in receipt of a PhD studentship from the Faculty of Health and Medicine, Lancaster University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Allinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Kania, D.M., Ginger, M.L., Allinson, S.L. (2020). Analysis of Base Excision and Single-Strand Break Repair Activities in Trypanosomatid Extracts. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols