Skip to main content

Proteome-Wide Quantitative Phosphoproteomic Analysis of Trypanosoma brucei Insect and Mammalian Life Cycle Stages

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

  • 1413 Accesses

Abstract

Mass spectrometry based proteomics allows for the identification and quantification of protein and phosphorylation site abundance on a proteome wide scale. Here we describe the metabolic labeling of cultured Trypanosoma brucei cells in either the bloodstream or procyclic life cycle stage using stable isotope labeling of amino acids in cell culture (SILAC), and the production of samples suitable for analysis by liquid chromatography tandem mass spectrometry. The protocols require little specialist equipment, and they typically enable quantification of over 4500 proteins and 9000 phosphorylation sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urbaniak MD (2014) Trypanosomatid phosphoproteomics. In: Doerig C, Spath G, Wiese M (eds) Protein phosphorylation in parasites: novel targets for antiparasitic intervention, vol 5. Drug discovery in infectious diseases. Wiley-VCH, Weinheim, pp 63–77

    Google Scholar 

  2. Grimsrud PA, Swaney DL, Wenger CD, Beauchene NA, Coon JJ (2010) Phosphoproteomics for the masses. ACS Chem Biol 5(1):105–119. https://doi.org/10.1021/cb900277e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probibility-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  4. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. https://doi.org/10.1007/s00216-007-1486-6

    Article  CAS  PubMed  Google Scholar 

  5. Urbaniak MD, Guther MLS, Ferguson MAJ (2012) Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One 7(5):e36619. https://doi.org/10.1371/journal.pone.0036619.g001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Urbaniak MD, Martin DM, Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 12(5):2233–2244. https://doi.org/10.1021/pr400086y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Domingo-Sananes MR, Szoor B, Ferguson MA, Urbaniak MD, Matthews KR (2015) Molecular control of irreversible bistability during trypanosome developmental commitment. J Cell Biol 211(2):455–468. https://doi.org/10.1083/jcb.201506114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts AJ, Fairlamb AH (2016) The N-myristoylome of Trypanosoma cruzi. Sci Rep 6:31078. https://doi.org/10.1038/srep31078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wyllie S, Thomas M, Patterson S et al (2018) Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature 560(7717):192–197. https://doi.org/10.1038/s41586-018-0356-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, Oda Y (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol 23(5):617–621. https://doi.org/10.1038/nbt1086

    Article  CAS  PubMed  Google Scholar 

  11. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  Google Scholar 

  12. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  13. Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76(13):3590–3598. https://doi.org/10.1021/ac0497104

    Article  CAS  PubMed  Google Scholar 

  14. Aslett M, Aurrecoechea C, Berriman M et al (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38(Database issue):D457–D462. https://doi.org/10.1093/nar/gkp851

    Article  CAS  PubMed  Google Scholar 

  15. Hirumi H, Hirumi K (1989) Continous cultivation of Trypanosoma brucei bloodstream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 75:985–989

    Article  CAS  Google Scholar 

  16. Brun R, Schonenberger M (1979) Cultivation and in vivo cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop 36:289–292

    CAS  PubMed  Google Scholar 

  17. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. https://doi.org/10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Urbaniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benz, C., Urbaniak, M.D. (2020). Proteome-Wide Quantitative Phosphoproteomic Analysis of Trypanosoma brucei Insect and Mammalian Life Cycle Stages. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics