Skip to main content

Taking Water into Account with the Fragment Molecular Orbital Method

  • Protocol
  • First Online:
Quantum Mechanics in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2114))

Abstract

This chapter describes the current status of development of the fragment molecular orbital (FMO) method for analyzing the electronic state and intermolecular interactions of biomolecular systems in solvent. The orbital energies and the inter-fragment interaction energies (IFIEs) for a specific molecular structure can be obtained directly by performing FMO calculations by exposing water molecules and counterions around biomolecular systems. Then, it is necessary to pay attention to the thickness of the water shell surrounding the biomolecules. The single-point calculation for snapshots from MD trajectory does not incorporate the effects of temperature and configurational fluctuation, but the SCIFIE (statistically corrected IFIE) method is proposed as a many-body correlated method that partially compensates for this deficiency. Furthermore, implicit continuous dielectric models have been developed as effective approaches to incorporating the screening effect of the solvent in thermal equilibrium, and we illustrate their usefulness for theoretical evaluation of IFIEs and ligand-binding free energy on the basis of the FMO-PBSA (Poisson–Boltzmann surface area) method and other computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344. https://doi.org/10.1039/c4cp00316k

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe C, Fukuzawa K, Tanaka S, Aida-Hyugaji S (2014) Charge clamps of lysines and hydrogen bonds play key roles in the mechanism to fix helix 12 in the agonist and antagonist positions of estrogen receptor α: intramolecular interactions studied by the ab initio fragment molecular orbital method. J Phys Chem B 118:4993–5008. https://doi.org/10.1021/jp411627y

    Article  CAS  PubMed  Google Scholar 

  3. Komeiji Y, Ishida T, Fedorov DG, Kitaura K (2007) Change in a protein’s electronic structure induced by an explicit solvent: an ab initio fragment molecular orbital study of ubiquitin. J Comput Chem 28:1750–1762. https://doi.org/10.1002/jcc.20686

    Article  CAS  PubMed  Google Scholar 

  4. Fukuzawa K, Watanabe C, Kurisaki I, Taguchi N, Mochizuki Y, Nakano T, Tanaka S, Komeiji Y (2014) Accuracy of the fragment molecular orbital (FMO) calculations for DNA: total energy, molecular orbital, and inter-fragment interaction energy. Comput Theor Chem 1034:7–16. https://doi.org/10.1016/j.comptc.2014.02.002

    Article  CAS  Google Scholar 

  5. Fukuzawa K, Kurisaki I, Watanabe C, Okiyama Y, Mochizuki Y, Tanaka S, Komeiji Y (2015) Explicit solvation modulates intra- and inter-molecular interactions within DNA: electronic aspects revealed by the ab initio fragment molecular orbital (FMO) method. Comput Theor Chem 1054:29–37. https://doi.org/10.1016/j.comptc.2014.11.020

    Article  CAS  Google Scholar 

  6. Komeiji Y, Okiyama Y, Mochizuki Y, Fukuzawa K (2017) Explicit solvation of a single-stranded DNA, a binding protein, and their complex: a suitable protocol for fragment molecular orbital calculation. Chem-Bio Informatics J 17:72–84. https://doi.org/10.1273/cbij.17.72

    Article  Google Scholar 

  7. Komeiji Y, Okiyama Y, Mochizuki Y, Fukuzawa K (2018) Interaction between a single-stranded DNA and a binding protein viewed by the fragment molecular orbital method. Bull Chem Soc Jpn 91:1596–1605. https://doi.org/10.1246/bcsj.20180150

    Article  CAS  Google Scholar 

  8. Terauchi Y, Suzuki R, Takeda R, Kobayashi I, Kittaka A, Takimoto-Kamimura M, Kurita N (2019) Ligand chirality can affect histidine protonation of vitamin-D receptor: ab initio molecular orbital calculations in water. J Steroid Biochem Mol Biol 186:89–95. https://doi.org/10.1016/j.jsbmb.2018.09.020

    Article  CAS  PubMed  Google Scholar 

  9. Takeda R, Kobayashi I, Shimamura K, Ishimura H, Kadoya R, Kawai K, Kittaka A, Takimoto-Kamimura M, Kurita N (2017) Specific interactions between vitamin-D receptor and its ligands: Ab initio molecular orbital calculations in water. J Steroid Biochem Mol Biol 171:75–79. https://doi.org/10.1016/j.jsbmb.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  10. Takeda R, Kobayashi I, Suzuki R, Kawai K, Kittaka A, Takimoto-Kamimura M, Kurita N (2018) Proposal of potent inhibitors for vitamin-D receptor based on ab initio fragment molecular orbital calculations. J Mol Graph Model 80:320–326. https://doi.org/10.1016/j.jmgm.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  11. Fukuzawa K, Mochizuki Y, Tanaka S, Kitaura K, Nakano T (2006) Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. J Phys Chem B 110:24276–24276. https://doi.org/10.1021/jp065705n

    Article  CAS  Google Scholar 

  12. Tanaka S, Watanabe C, Okiyama Y (2013) Statistical correction to effective interactions in the fragment molecular orbital method. Chem Phys Lett 556:272–277. https://doi.org/10.1016/j.cplett.2012.11.085

    Article  CAS  Google Scholar 

  13. Hansen JP, McDonald IR (2006) Theory of simple liquids, 3rd edn. Academic, London

    Google Scholar 

  14. Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Okiyama Y, Tsukamoto T, Watanabe C, Fukuzawa K, Tanaka S, Mochizuki Y (2013) Modeling of peptide–silica interaction based on four-body corrected fragment molecular orbital (FMO4) calculations. Chem Phys Lett 566:25–31. https://doi.org/10.1016/j.cplett.2013.02.020

    Article  CAS  Google Scholar 

  16. Kato K, Fukuzawa K, Mochizuki Y (2015) Modeling of hydroxyapatite–peptide interaction based on fragment molecular orbital method. Chem Phys Lett 629:58–64. https://doi.org/10.1016/j.cplett.2015.03.057

    Article  CAS  Google Scholar 

  17. Ando H, Shigeta Y, Baba T, Watanabe C, Okiyama Y, Mochizuki Y, Nakano M (2015) Hydration effects on enzyme–substrate complex of nylon oligomer hydrolase: inter-fragment interaction energy study by the fragment molecular orbital method. Mol Phys 113:319–326. https://doi.org/10.1080/00268976.2014.941311

    Article  CAS  Google Scholar 

  18. Ryde U, Söderhjelm P (2016) Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev 116:5520–5566. https://doi.org/10.1021/acs.chemrev.5b00630

    Article  CAS  PubMed  Google Scholar 

  19. Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). J Comput Chem 27:976–985. https://doi.org/10.1002/jcc.20406

    Article  CAS  PubMed  Google Scholar 

  20. Fedorov DG (2018) Analysis of solute–solvent interactions using the solvation model density combined with the fragment molecular orbital method. Chem Phys Lett 702:111–116. https://doi.org/10.1016/j.cplett.2018.05.002

    Article  CAS  Google Scholar 

  21. Watanabe H, Okiyama Y, Nakano T, Tanaka S (2010) Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson–Boltzmann equation. Chem Phys Lett 500:116–119. https://doi.org/10.1016/j.cplett.2010.10.017

    Article  CAS  Google Scholar 

  22. Okiyama Y, Nakano T, Watanabe C, Fukuzawa K, Mochizuki Y, Tanaka S (2018) Fragment molecular orbital calculations with implicit solvent based on the Poisson–Boltzmann equation: implementation and DNA study. J Phys Chem B 122:4457–4471. https://doi.org/10.1021/acs.jpcb.8b01172

    Article  CAS  PubMed  Google Scholar 

  23. Nishimoto Y, Fedorov DG (2016) The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Phys Chem Chem Phys 18:22047–22061. https://doi.org/10.1039/C6CP02186G

    Article  CAS  PubMed  Google Scholar 

  24. Simoncini D, Nakata H, Ogata K, Nakamura S, Zhang KYJ (2015) Quality assessment of predicted protein models using energies calculated by the fragment molecular orbital method. Mol Inform 34:97–104. https://doi.org/10.1002/minf.201400108

    Article  CAS  PubMed  Google Scholar 

  25. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  27. Fedorov DG, Kitaura K (2012) Energy decomposition analysis in solution based on the fragment molecular orbital method. J Phys Chem A 116:704–719. https://doi.org/10.1021/jp209579w

    Article  CAS  PubMed  Google Scholar 

  28. Mazanetz MP, Chudyk EI, Fedorov DG, Alexeev Y (2016) Applications of the fragment molecular orbital method to drug research. In: Zhang W (ed) Computer-aided drug discovery. methods in pharmacology and toxicology. Humana Press, New York, NY, pp 217–255

    Google Scholar 

  29. Okiyama Y, Watanabe C, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S (2019) Fragment molecular orbital calculations with implicit solvent based on the Poisson–Boltzmann equation: II. Protein and its ligand-binding system studies. J Phys Chem B 123:957–973. https://doi.org/10.1021/acs.jpcb.8b09326

    Article  CAS  PubMed  Google Scholar 

  30. Fedorov DG, Kitaura K (2016) Subsystem analysis for the fragment molecular orbital method and its application to protein–ligand binding in solution. J Phys Chem A 120:2218–2231. https://doi.org/10.1021/acs.jpca.6b00163

    Article  CAS  PubMed  Google Scholar 

  31. Śliwa P, Kurczab R, Kafel R, Drabczyk A, Jaśkowska J (2019) Recognition of repulsive and attractive regions of selected serotonin receptor binding site using FMO-EDA approach. J Mol Model 25:114. https://doi.org/10.1007/s00894-019-3995-6

    Article  CAS  PubMed  Google Scholar 

  32. Chaudhury S, Gray JJ (2009) Identification of structural mechanisms of HIV-1 protease specificity using computational peptide docking: implications for drug resistance. Structure 17:1636–1648. https://doi.org/10.1016/j.str.2009.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jensen JH, Willemoës M, Winther JR, De Vico L (2014) In silico prediction of mutant HIV-1 proteases cleaving a target sequence. PLoS One 9:e95833. https://doi.org/10.1371/journal.pone.0095833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watanabe C, Watanabe H, Fukuzawa K, Parker LJ, Okiyama Y, Yuki H, Yokoyama S, Nakano H, Tanaka S, Honma T (2017) Theoretical analysis of activity cliffs among benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics Poisson–Boltzmann surface area (FMO+MM-PBSA) approach. J Chem Inf Model 57:2996–3010. https://doi.org/10.1021/acs.jcim.7b00110

    Article  CAS  PubMed  Google Scholar 

  35. Okimoto N, Otsuka T, Hirano Y, Taiji M (2018) Use of the multilayer fragment molecular orbital method to predict the rank order of protein–ligand binding affinities: a case study using tankyrase 2 inhibitors. ACS Omega 3:4475–4485. https://doi.org/10.1021/acsomega.8b00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morao I, Fedorov DG, Robinson R, Southey M, Townsend-Nicholson A, Bodkin MJ, Heifetz A (2017) Rapid and accurate assessment of GPCR–ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method. J Comput Chem 38:1987–1990. https://doi.org/10.1002/jcc.24850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Söderhjelm P, Kongsted J, Ryde U (2010) Ligand affinities estimated by quantum chemical calculations. J Chem Theory Comput 6:1726–1737. https://doi.org/10.1021/ct9006986

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 17H06353 and 18K03825.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okiyama, Y., Fukuzawa, K., Komeiji, Y., Tanaka, S. (2020). Taking Water into Account with the Fragment Molecular Orbital Method. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0282-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0281-2

  • Online ISBN: 978-1-0716-0282-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics