Skip to main content

Current and Future Challenges in Modern Drug Discovery

  • Protocol
  • First Online:
Quantum Mechanics in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2114))

Abstract

Drug discovery is an expensive, time-consuming, and risky business. To avoid late-stage failure, learnings from past projects and the development of new approaches are crucial. New modalities and emerging new target spaces allow the exploration of unprecedented indications or to address so far undrugable targets. Late-stage attrition is usually attributed to the lack of efficacy or to compound-related safety issues. Efficacy has been shown to be related to a strong genetic link to human disease, a better understanding of the target biology, and the availability of biomarkers to bridge from animals to humans. Compound safety can be improved by ligand optimization, which is becoming increasingly demanding for difficult targets. Therefore, new strategies include the design of allosteric ligands, covalent binders, and other modalities. Design methods currently heavily rely on artificial intelligence and advanced computational methods such as free energy calculations and quantum chemistry. Especially for quantum chemical methods, a more detailed overview is given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  2. Sertkaya A, Wong H-H, Jessup A, Beleche T (2016) Key cost drivers of pharmaceutical clinical trials in the United States. Clin Trials 13(2):117–126

    Article  PubMed  Google Scholar 

  3. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475

    Article  CAS  PubMed  Google Scholar 

  4. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419

    Article  CAS  PubMed  Google Scholar 

  5. Mullard A (2019) 2018 FDA drug approvals. Nat Rev Drug Discov 18(2):85–89

    Article  CAS  PubMed  Google Scholar 

  6. Dehmer SP, Pardey PG, Beddow JM, Chai Y (2019) Reshuffling the global R&D deck, 1980–2050. PLoS One 14(3):e0213801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mullard A (2017) 2016 FDA drug approvals. Nat Rev Drug Discov 16:73

    Article  CAS  PubMed  Google Scholar 

  8. Mullard A (2018) 2017 FDA drug approvals. Nat Rev Drug Discov 17:81

    Article  CAS  PubMed  Google Scholar 

  9. Mariz S, Reese JH, Westermark K, Greene L, Goto T, Hoshino T, Llinares-Garcia J, Sepodes B (2016) Worldwide collaboration for orphan drug designation. Nat Rev Drug Discov 15:440

    Article  PubMed  CAS  Google Scholar 

  10. Harrison C (2010) Patent watch: the patent cliff steepens. Nat Rev Drug Discov 10:12

    Google Scholar 

  11. Remus JL, Dantzer R (2016) Inflammation models of depression in rodents: relevance to psychotropic drug discovery. Int J Neuropsychopharmacol 19(9):pyw028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. New Engl J Med 363(2):166–176

    Article  CAS  PubMed  Google Scholar 

  13. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1):3–26

    Article  CAS  PubMed  Google Scholar 

  14. McGrath NA, Brichacek M, Njardarson JT (2010) A graphical journey of innovative organic architectures that have improved our lives. J Chem Educ 87(12):1348–1349

    Article  CAS  Google Scholar 

  15. Urits I, Jones MR, Gress K, Charipova K, Fiocchi J, Kaye AD, Viswanath O (2019) CGRP antagonists for the treatment of chronic migraines: a comprehensive review. Curr Pain Headache Rep 23(5):29

    Article  PubMed  Google Scholar 

  16. Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A, Gomez SM, Guha R, Hersey A, Holmes J, Jadhav A, Jensen LJ, Johnson GL, Karlson A, Leach AR, Ma'ayan A, Malovannaya A, Mani S, Mathias SL, McManus MT, Meehan TF, von Mering C, Muthas D, Nguyen D-T, Overington JP, Papadatos G, Qin J, Reich C, Roth BL, Schürer SC, Simeonov A, Sklar LA, Southall N, Tomita S, Tudose I, Ursu O, Vidović D, Waller A, Westergaard D, Yang JJ, Zahoránszky-Köhalmi G (2018) Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov 17:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Li S, Li H (2019) Drug design of “Undruggable” targets. Chin. J Chem 37(5):501–512

    CAS  Google Scholar 

  18. Toure M, Crews CM (2016) Small-molecule PROTACS: new approaches to protein degradation. Angew Chem Int Ed 55(6):1966–1973

    Article  CAS  Google Scholar 

  19. Schnorrenberg G (2019) New trends in drug discovery. In: Fischer J, Klein C, Childers WE (eds) Successful drug discovery, vol 3, pp 1–39

    Google Scholar 

  20. Michino M, Beuming T, Donthamsetti P, Newman AH, Javitch JA, Shi L (2015) What can crystal structures of aminergic receptors tell us about designing subtype-selective ligands? Pharmacol Rev 67(1):198–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vass M, Podlewska S, de Esch IJP, Bojarski AJ, Leurs R, Kooistra AJ, de Graaf C (2019) Aminergic GPCR–ligand interactions: a chemical and structural map of receptor mutation data. J Med Chem 62(8):3784–3839

    Article  CAS  PubMed  Google Scholar 

  22. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16:829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17(5):353–377

    Article  CAS  PubMed  Google Scholar 

  24. Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6(1):41–47

    Article  CAS  PubMed  Google Scholar 

  25. Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S, Knapp S (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136(2):352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wold EA, Chen J, Cunningham KA, Zhou J (2019) Allosteric modulation of class A GPCRs: targets, agents, and emerging concepts. J Med Chem 62(1):88–127

    Article  CAS  PubMed  Google Scholar 

  27. Tautermann CS, Binder F, Büttner FH, Eickmeier C, Fiegen D, Gross U, Grundl MA, Heilker R, Hobson S, Hoerer S, Luippold A, Mack V, Montel F, Peters S, Bhattacharya S, Vaidehi N, Schnapp G, Thamm S, Zeeb M (2019) Allosteric activation of striatal-enriched protein tyrosine phosphatase (STEP, PTPN5) by a fragment-like molecule. J Med Chem 62(1):306–316

    Article  CAS  PubMed  Google Scholar 

  28. Wenthur CJ, Gentry PR, Mathews TP, Lindsley CW (2014) Drugs for allosteric sites on receptors. Annu Rev Pharmacol Toxicol 54(1):165–184

    Article  CAS  PubMed  Google Scholar 

  29. Changeux J-P, Christopoulos A (2017) Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes Metab 19(S1):4–21

    Article  CAS  PubMed  Google Scholar 

  30. Betz M, Wulsdorf T, Krimmer SG, Klebe G (2016) Impact of surface water layers on protein–ligand binding: how well are experimental data reproduced by molecular dynamics simulations in a thermolysin test case? J Chem Inf Model 56(1):223–233

    Article  CAS  PubMed  Google Scholar 

  31. Robinson D, Bertrand T, Carry J-C, Halley F, Karlsson A, Mathieu M, Minoux H, Perrin M-A, Robert B, Schio L, Sherman W (2016) Differential water thermodynamics determine PI3K-beta/delta selectivity for solvent-exposed ligand modifications. J Chem Inf Model 56(5):886–894

    Article  CAS  PubMed  Google Scholar 

  32. Schiebel J, Gaspari R, Wulsdorf T, Ngo K, Sohn C, Schrader TE, Cavalli A, Ostermann A, Heine A, Klebe G (2018) Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat Commun 9(1):3559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Christ CD, Fox T (2014) Accuracy assessment and automation of free energy calculations for drug design. J Chem Inf Model 54(1):108–120

    Article  CAS  PubMed  Google Scholar 

  34. Ruan H, Sun Q, Zhang W, Liu Y, Lai L (2019) Targeting intrinsically disordered proteins at the edge of chaos. Drug Discov Today 24(1):217–227

    Article  CAS  PubMed  Google Scholar 

  35. Neira JL, Bintz J, Arruebo M, Rizzuti B, Bonacci T, Vega S, Lanas A, Velázquez-Campoy A, Iovanna JL, Abián O (2017) Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci Rep 7:39732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Antunes DA, Devaurs D, Kavraki LE (2015) Understanding the challenges of protein flexibility in drug design. Expert Opin Drug Discovery 10(12):1301–1313

    Article  CAS  Google Scholar 

  37. Buonfiglio R, Recanatini M, Masetti M (2015) Protein flexibility in drug discovery: from theory to computation. ChemMedChem 10(7):1141–1148

    Article  CAS  PubMed  Google Scholar 

  38. Amaral M, Kokh DB, Bomke J, Wegener A, Buchstaller HP, Eggenweiler HM, Matias P, Sirrenberg C, Wade RC, Frech M (2017) Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat Commun 8(1):2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ustach VD, Lakkaraju SK, Jo S, Yu W, Jiang W, MacKerell AD (2019) Optimization and evaluation of site-identification by ligand competitive saturation (SILCS) as a tool for target-based ligand optimization. J Chem Inf Model 59(6):3018–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gurova K (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol 5(10):1685–1704

    Article  CAS  PubMed  Google Scholar 

  41. Hossain M, Giri P, Kumar GS (2008) DNA intercalation by Quinacrine and methylene blue: a comparative binding and thermodynamic characterization study. DNA Cell Biol 27(2):81–90

    Article  CAS  PubMed  Google Scholar 

  42. Connelly Colleen M, Moon Michelle H, Schneekloth John S Jr (2016) The emerging role of RNA as a therapeutic target for small molecules. Cell Chem Biol 23(9):1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Breaker Ronald R, Joyce Gerald F (2014) The expanding view of RNA and DNA function. Chem Biol 21(9):1059–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Disney MD (2019) Targeting RNA with small molecules to capture opportunities at the intersection of chemistry, biology, and medicine. J Am Chem Soc 141(17):6776–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arkin Michelle R, Tang Y, Wells James A (2014) Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24(11):2546–2554

    Article  CAS  PubMed  Google Scholar 

  47. Tang Z, Chang C-eA (2018) Binding thermodynamics and kinetics calculations using chemical host and guest: a comprehensive picture of molecular recognition. J Chem Theory Comput 14(1):303–318

    Article  CAS  PubMed  Google Scholar 

  48. John Kenneth M, Shuxing Z (2012) Computational prediction of protein hot spot residues. Curr Pharm Des 18(9):1255–1265

    Article  Google Scholar 

  49. Daze KD, Hof F (2013) The Cation−π interaction at protein–protein interaction interfaces: developing and learning from synthetic mimics of proteins that bind methylated Lysines. Acc Chem Res 46(4):937–945

    Article  CAS  PubMed  Google Scholar 

  50. Pinheiro S, Soteras I, Gelpí JL, Dehez F, Chipot C, Luque FJ, Curutchet C (2017) Structural and energetic study of cation–π–cation interactions in proteins. Phys Chem Chem Phys 19(15):9849–9861

    Article  CAS  PubMed  Google Scholar 

  51. Lonsdale R, Ward RA (2018) Structure-based design of targeted covalent inhibitors. Chem Soc Rev 47(11):3816–3830

    Article  CAS  PubMed  Google Scholar 

  52. Palazzesi F, Grundl MA, Pautsch A, Weber A, Tautermann CS (2019) A fast Ab initio predictor tool for covalent reactivity estimation of acrylamides. J Chem Inf Model 59(8):3565–3571

    Article  CAS  PubMed  Google Scholar 

  53. Flanagan ME, Abramite JA, Anderson DP, Aulabaugh A, Dahal UP, Gilbert AM, Li C, Montgomery J, Oppenheimer SR, Ryder T, Schuff BP, Uccello DP, Walker GS, Wu Y, Brown MF, Chen JM, Hayward MM, Noe MC, Obach RS, Philippe L, Shanmugasundaram V, Shapiro MJ, Starr J, Stroh J, Che Y (2014) Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of Irreversible Inhibitors. J Med Chem 57(23):10072–10079

    Article  CAS  PubMed  Google Scholar 

  54. Salamoun JM, Wipf P (2016) Allosteric modulation of phosphatase activity may redefine therapeutic value. J Med Chem 59(17):7771–7772

    Article  CAS  PubMed  Google Scholar 

  55. Vaidehi N, Bhattacharya S (2016) Allosteric communication pipelines in G-protein-coupled receptors. Curr Opin Pharmacol 30:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fox SJ, Dziedzic J, Fox T, Tautermann CS, Skylaris C-K (2014) Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site. Proteins: struct. Funct Bioinform 82(12):3335–3346

    Article  CAS  Google Scholar 

  57. Heifetz A, Trani G, Aldeghi M, MacKinnon CH, McEwan PA, Brookfield FA, Chudyk EI, Bodkin M, Pei Z, Burch JD, Ortwine DF (2016) Fragment molecular orbital method applied to Lead optimization of novel Interleukin-2 inducible T-cell kinase (ITK) inhibitors. J Med Chem 59(9):4352–4363

    Article  CAS  PubMed  Google Scholar 

  58. Morao I, Fedorov DG, Robinson R, Southey M, Townsend-Nicholson A, Bodkin MJ, Heifetz A (2017) Rapid and accurate assessment of GPCR–ligand interactions using the fragment molecular orbital-based density-functional tight-binding method. J Comput Chem 38(23):1987–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi J, Kim H-J, Jin X, Lim H, Kim S, Roh I-S, Kang H-E, No KT, Sohn H-J (2018) Application of the fragment molecular orbital method to discover novel natural products for prion disease. Sci Rep 8(1):13063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pantsar T, Poso A (2018) Binding affinity via docking: fact and fiction. Molecules 23(8):1899

    Article  PubMed Central  CAS  Google Scholar 

  61. Crespo A, Rodriguez-Granillo A, Lim VT (2017) Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization. Curr Top Med Chem 17(23):2663–2680

    Article  CAS  PubMed  Google Scholar 

  62. Chodera JD, Noé F (2014) Markov state models of biomolecular conformational dynamics. Curr Opin Struct Biol 25:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wenzel J, Matter H, Schmidt F (2019) Predictive multitask deep neural network models for ADME-Tox properties: learning from large data sets. J Chem Inf Model 59(3):1253–1268

    Article  CAS  PubMed  Google Scholar 

  64. Hessler G, Baringhaus K-H (2018) Artificial Intelligence in Drug Design. Molecules 23(10):2520

    Article  PubMed Central  CAS  Google Scholar 

  65. Skalic M, Jiménez J, Sabbadin D, De Fabritiis G (2019) Shape-based generative modeling for de novo drug design. J Chem Inf Model 59(3):1205–1214

    Article  CAS  PubMed  Google Scholar 

  66. Vidler LR, Baumgartner MP (2019) Creating a virtual assistant for medicinal chemistry. ACS Med Chem Lett 10(7):1051–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A (2017) druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in Silico. Mol Pharm 14(9):3098–3104

    Article  CAS  PubMed  Google Scholar 

  68. Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555:604

    Article  CAS  PubMed  Google Scholar 

  69. El Kerdawy A, Güssregen S, Matter H, Hennemann M, Clark T (2013) Quantum mechanics-based properties for 3D-QSAR. J Chem Inf Model 53(6):1486–1502

    Article  PubMed  CAS  Google Scholar 

  70. Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Göller AH (2009) CypScore: quantitative prediction of reactivity toward cytochromes P450 based on Semiempirical molecular orbital theory. ChemMedChem 4(4):657–669

    Article  CAS  PubMed  Google Scholar 

  71. Arodola OA, Soliman MES (2017) Quantum mechanics implementation in drug-design workflows: does it really help? Drug Des Devel Ther 11:2551–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cavasotto CN, Adler NS, Aucar MG (2018) Quantum chemical approaches in structure-based virtual screening and Lead optimization. Front Chem 6:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Raha K, Merz KM (2005) Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein−ligand complexes. J Med Chem 48(14):4558–4575

    Article  CAS  PubMed  Google Scholar 

  74. Ryde U, Söderhjelm P (2016) Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev 116(9):5520–5566

    Article  CAS  PubMed  Google Scholar 

  75. Cavasotto CN, Aucar MG, Adler NS (2019) Computational chemistry in drug lead discovery and design. Int J Quantum Chem 119(2):e25678

    Article  CAS  Google Scholar 

  76. Chudyk EI, Sarrat L, Aldeghi M, Fedorov DG, Bodkin MJ, James T, Southey M, Robinson R, Morao I, Heifetz A (2018) Exploring GPCR-ligand interactions with the fragment molecular orbital (FMO) method. In: Heifetz A (ed) Computational methods for GPCR drug discovery. Springer New York, New York, NY, pp 179–195. https://doi.org/10.1007/978-1-4939-7465-8_8

    Chapter  Google Scholar 

  77. Bootsma AN, Doney AC, Wheeler SE (2019) Predicting the strength of stacking interactions between Heterocycles and aromatic amino acid side chains. J Am Chem Soc 141(28):11027–11035

    Article  CAS  PubMed  Google Scholar 

  78. Huber RG, Margreiter MA, Fuchs JE, von Grafenstein S, Tautermann CS, Liedl KR, Fox T (2014) Heteroaromatic π-stacking energy landscapes. J Chem Inf Model 54(5):1371–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. El Kerdawy A, Tautermann CS, Clark T, Fox T (2013) Economical and accurate protocol for calculating hydrogen-bond-acceptor strengths. J Chem Inf Model 53(12):3262–3272

    Article  PubMed  CAS  Google Scholar 

  80. Zheng M, Reimers JR, Waller MP, Afonine PV (2017) Q|R: quantum-based refinement. Acta Crystallogr Sect D 73(1):45–52

    Article  CAS  Google Scholar 

  81. Phipps MJS, Fox T, Tautermann CS, Skylaris C-K (2015) Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem Soc Rev 44(10):3177–3211

    Article  CAS  PubMed  Google Scholar 

  82. Barbault F, Maurel F (2015) Simulation with quantum mechanics/molecular mechanics for drug discovery. Expert Opin Drug Discovery 10(10):1047–1057

    Article  CAS  Google Scholar 

  83. Lim H, Jin X, Kim J, Hwang S, Shin KB, Choi J, No KT (2019) Investigation of hot spot region in XIAP inhibitor binding site by fragment molecular orbital method. Comput Struct Biotechnol J 17:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Butler KT, Luque FJ, Barril X (2009) Toward accurate relative energy predictions of the bioactive conformation of drugs. J Comput Chem 30(4):601–610

    Article  CAS  PubMed  Google Scholar 

  85. Kanal IY, Keith JA, Hutchison GR (2018) A sobering assessment of small-molecule force field methods for low energy conformer predictions. Int J Quantum Chem 118(5):e25512

    Article  CAS  Google Scholar 

  86. Hao M-H, Haq O, Muegge I (2007) Torsion angle preference and energetics of small-molecule ligands bound to proteins. J Chem Inf Model 47(6):2242–2252

    Article  CAS  PubMed  Google Scholar 

  87. Reenu V (2015) Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna. J Mol Graph Model 61:89–101

    Article  CAS  PubMed  Google Scholar 

  88. Choi J-S, Ha MK, Trinh TX, Yoon TH, Byun H-G (2018) Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources. Sci Rep 8(1):6110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Olsen L, Montefiori M, Tran KP, Jørgensen FS (2019) SMARTCyp 3.0: enhanced cytochrome P450 site-of-metabolism prediction server. Bioinformatics 35(17):3174–3175

    Article  PubMed  Google Scholar 

  90. Lonsdale R, Harvey JN, Mulholland AJ (2012) A practical guide to modelling enzyme-catalysed reactions. Chem Soc Rev 41(8):3025–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steinmann C, Fedorov DG, Jensen JH (2013) Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry. PLoS One 8(4):e60602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lonsdale R, Burgess J, Colclough N, Davies NL, Lenz EM, Orton AL, Ward RA (2017) Expanding the armory: predicting and tuning covalent warhead reactivity. J Chem Inf Model 57(12):3124–3137

    Article  CAS  PubMed  Google Scholar 

  93. Merten C, Golub TP, Kreienborg NM (2019) Absolute configurations of synthetic molecular scaffolds from vibrational CD spectroscopy. J Org Chem 84(14):8797–8814

    Article  CAS  PubMed  Google Scholar 

  94. Xin D, Sader CA, Chaudhary O, Jones P-J, Wagner K, Tautermann CS, Yang Z, Busacca CA, Saraceno RA, Fandrick KR, Gonnella NC, Horspool K, Hansen G, Senanayake CH (2017) Development of a 13C NMR chemical shift prediction procedure using B3LYP/cc-pVDZ and empirically derived systematic error correction terms: a computational small molecule structure elucidation method. J Org Chem 82(10):5135–5145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christofer S. Tautermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tautermann, C.S. (2020). Current and Future Challenges in Modern Drug Discovery. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0282-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0281-2

  • Online ISBN: 978-1-0716-0282-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics