Skip to main content

Molecular Docking Using Quantum Mechanical-Based Methods

  • Protocol
  • First Online:
Quantum Mechanics in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2114))

Abstract

Computational methods are a powerful and consolidated tool in the early stage of the drug lead discovery process. Among these techniques, high-throughput molecular docking has proved to be extremely useful in identifying novel bioactive compounds within large chemical libraries. In the docking procedure, the predominant binding mode of each small molecule within a target binding site is assessed, and a docking score reflective of the likelihood of binding is assigned to them. These methods also shed light on how a given hit could be modified in order to improve protein–ligand interactions and are thus able to guide lead optimization. The possibility of reducing time and cost compared to experimental approaches made this technology highly appealing. Due to methodological developments and the increase of computational power, the application of quantum mechanical methods to study macromolecular systems has gained substantial attention in the last decade. A quantum mechanical description of the interactions involved in molecular association of biomolecules may lead to better accuracy compared to molecular mechanics, since there are many physical phenomena that cannot be correctly described within a classical framework, such as covalent bond formation, polarization effects, charge transfer, bond rearrangements, halogen bonding, and others, that require electrons to be explicitly accounted for. Considering the fact that quantum mechanics-based approaches in biomolecular simulation constitute an active and important field of research, we highlight in this work the recent developments of quantum mechanical-based molecular docking and high-throughput docking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  2. Keseru GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8:203–212

    Article  PubMed  CAS  Google Scholar 

  3. Lipkin MJ, Stevens AP, Livingstone DJ et al (2008) How large does a compound screening collection need to be? Comb Chem High Throughput Screen 11:482–493

    Article  CAS  PubMed  Google Scholar 

  4. Phatak SS, Stephan CC, Cavasotto CN (2009) High-throughput and in silico screenings in drug discovery. Expert Opin Drug Discov 4:947–959

    Article  CAS  PubMed  Google Scholar 

  5. Baron R, Mccammon JA (2013) Molecular recognition and ligand association. Annu Rev Phys Chem 64:151–175

    Article  CAS  PubMed  Google Scholar 

  6. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42:724–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jorgensen WL (2012) Challenges for academic drug discovery. Angew Chem Int Ed Engl 51:11680–11684

    Article  CAS  PubMed  Google Scholar 

  8. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Spyrakis F, Cavasotto CN (2015) Open challenges in structure-based virtual screening: receptor modeling, target flexibility consideration and active site water molecules description. Arch Biochem Biophys 583:105–119

    Article  CAS  PubMed  Google Scholar 

  10. Cavasotto CN, Orry AJ (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014

    Article  CAS  PubMed  Google Scholar 

  11. Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cavasotto CN, Aucar MG, Adler NS (2019) Computational chemistry in drug lead discovery and design. Int J Quantum Chem 119:e25678

    Article  CAS  Google Scholar 

  13. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  CAS  PubMed  Google Scholar 

  14. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41:2644–2676

    Article  CAS  PubMed  Google Scholar 

  15. Mobley DL, Gilson MK (2017) Predicting binding free energies: Frontiers and benchmarks. Annu Rev Biophys 46:531–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baron R, Mccammon JA (2008) (Thermo)dynamic role of receptor flexibility, entropy, and motional correlation in protein-ligand binding. ChemPhysChem 9:983–988

    Article  CAS  PubMed  Google Scholar 

  17. Kitchen DB, Decornez H, Furr JR et al (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  18. Amadasi A, Surface JA, Spyrakis F et al (2008) Robust classification of "relevant" water molecules in putative protein binding sites. J Med Chem 51:1063–1067

    Article  CAS  PubMed  Google Scholar 

  19. Cozzini P, Fornabaio M, Mozzarelli A et al (2006) Water: how to evaluate its contribution in protein-ligand interactions. Int J Quantum Chem 106:647–651

    Article  CAS  Google Scholar 

  20. Richards WG (1977) Quantum pharmacology. Butterworths, London; Boston

    Google Scholar 

  21. Mucs D, Bryce RA (2013) The application of quantum mechanics in structure-based drug design. Expert Opin Drug Discov 8:263–276

    Article  CAS  PubMed  Google Scholar 

  22. De Benedetti PG, Fanelli F (2014) Multiscale quantum chemical approaches to QSAR modeling and drug design. Drug Discov Today 19:1921–1927

    Article  PubMed  CAS  Google Scholar 

  23. Blomberg MR, Borowski T, Himo F et al (2014) Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 114:3601–3658

    Article  CAS  PubMed  Google Scholar 

  24. Forti F, Cavasotto CN, Orozco M et al (2012) A multilevel strategy for the exploration of the conformational flexibility of small molecules. J Chem Theory Comput 8:1808–1819

    Article  CAS  PubMed  Google Scholar 

  25. Juarez-Jimenez J, Barril X, Orozco M et al (2015) Assessing the suitability of the multilevel strategy for the conformational analysis of small ligands. J Phys Chem B 119:1164–1172

    Article  CAS  PubMed  Google Scholar 

  26. Barbault F, Maurel F (2015) Simulation with quantum mechanics/molecular mechanics for drug discovery. Expert Opin Drug Discov 10:1047–1057

    Article  PubMed  CAS  Google Scholar 

  27. Cavasotto CN, Adler NS, Aucar MG (2018) Quantum chemical approaches in structure-based virtual screening and lead optimization. Front Chem 6:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Crespo A, Rodriguez-Granillo A, Lim VT (2017) Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization. Curr Top Med Chem 17:2663–2680

    Article  CAS  PubMed  Google Scholar 

  29. Lodola A, De Vivo M (2012) The increasing role of QM/MM in drug discovery. Adv Protein Chem Struct Biol 87:337–362

    Article  CAS  PubMed  Google Scholar 

  30. Ehrlich S, Goller AH, Grimme S (2017) Towards full quantum-mechanics-based protein-ligand binding affinities. ChemPhysChem 18:898–905

    Article  CAS  PubMed  Google Scholar 

  31. Ryde U, Söderhjelm P (2016) Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev 116:5520–5566

    Article  CAS  PubMed  Google Scholar 

  32. Yilmazer ND, Korth M (2016) Prospects of applying enhanced semi-empirical QM methods for 2101 virtual drug design. Curr Med Chem 23:2101–2111

    Article  CAS  PubMed  Google Scholar 

  33. Rognan D (2011) Docking methods for virtual screening: principles and recent advances. In: Sotriffer C (ed) Virtual screening. Principles, challenges and practical guidelines. Wiley-VCH Verlag, Weinheim, Germany, pp 153–176

    Chapter  Google Scholar 

  34. Sotriffer CA (2015) Protein-ligand docking: from basic principles to advanced applications. In: Cavasotto CN (ed) In silico drug discovery and design: theory, methods, challenges, and applications. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 155–188

    Chapter  Google Scholar 

  35. Guedes IA, Pereira FSS, Dardenne LE (2018) Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front Pharmacol 9:1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cavasotto CN (2012) Binding free energy calculations and scoring in small-molecule docking. In: Luque FJ, Barril X (eds) Physico-chemical and computational approaches to drug discovery. Royal Society of Chemistry, London, pp 195–222

    Chapter  Google Scholar 

  37. Li J, Fu A, Zhang L (2019) An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking. Interdiscip Sci 11(2):320–328

    Article  PubMed  CAS  Google Scholar 

  38. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975

    Article  CAS  PubMed  Google Scholar 

  39. Su M, Yang Q, Du Y et al (2019) Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model 59:895–913

    Article  CAS  PubMed  Google Scholar 

  40. Warren GL, Andrews CW, Capelli AM et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    Article  CAS  PubMed  Google Scholar 

  41. Slater O, Kontoyianni M (2019) The compromise of virtual screening and its impact on drug discovery. Expert Opin Drug Discov 14:619–637

    Article  CAS  PubMed  Google Scholar 

  42. Cho AE, Guallar V, Berne BJ et al (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26:915–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang D, Li H, Wang H et al (2016) Docking accuracy enhanced by QM-derived protein charges. Mol Phys 114:3015–3025

    Article  CAS  Google Scholar 

  44. Raha K, Merz KM Jr (2004) A quantum mechanics-based scoring function: study of zinc ion-mediated ligand binding. J Am Chem Soc 126:1020–1021

    Article  CAS  PubMed  Google Scholar 

  45. Dewar MJS, Zoebisch EG, Healy EF et al (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  46. Dixon SL, Merz KM Jr (1996) Semiempirical molecular orbital calculations with linear system size scaling. J Chem Phys 104:6643–6649

    Article  CAS  Google Scholar 

  47. Raha K, Merz KM Jr (2005) Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J Med Chem 48:4558–4575

    Article  CAS  PubMed  Google Scholar 

  48. Fong P, Mcnamara JP, Hillier IH et al (2009) Assessment of QM/MM scoring functions for molecular docking to HIV-1 protease. J Chem Inf Model 49:913–924

    Article  CAS  PubMed  Google Scholar 

  49. Alvarez LD, Veleiro AS, Burton G (2015) Exploring the molecular basis of action of ring D aromatic steroidal antiestrogens. Proteins 83:1297–1306

    Article  CAS  PubMed  Google Scholar 

  50. Anisimov VM, Cavasotto CN (2011) Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain. J Comput Chem 32:2254–2263

    Article  CAS  PubMed  Google Scholar 

  51. Anisimov VM, Ziemys A, Kizhake S et al (2011) Computational and experimental studies of the interaction between phospho-peptides and the C-terminal domain of BRCA1. J Comput Aided Mol Des 25:1071–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anisimov VM, Cavasotto CN (2011) Hydration free energies using semiempirical quantum mechanical Hamiltonians and a continuum solvent model with multiple atomic-type parameters. J Phys Chem B 115:7896–7905

    Article  CAS  PubMed  Google Scholar 

  53. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  54. Cavasotto CN, Palomba D (2015) Expanding the horizons of G protein-coupled receptor structure-based ligand discovery and optimization using homology models. Chem Commun 51:13576–13594

    Article  CAS  Google Scholar 

  55. Kim M, Cho AE (2016) Incorporating QM and solvation into docking for applications to GPCR targets. Phys Chem Chem Phys 18:28281–28289

    Article  CAS  PubMed  Google Scholar 

  56. Chaskar P, Zoete V, Rohrig UF (2014) Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: development and benchmark of a scoring function. J Chem Inf Model 54:3137–3152

    Article  CAS  PubMed  Google Scholar 

  57. Grosdidier A, Zoete V, Michielin O (2007) EADock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins 67:1010–1025

    Article  CAS  PubMed  Google Scholar 

  58. Elstner M, Porezag D, Jungnickel G et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  59. Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zoete V, Schuepbach T, Bovigny C et al (2016) Attracting cavities for docking. Replacing the rough energy landscape of the protein by a smooth attracting landscape. J Comput Chem 37:437–447

    Article  CAS  PubMed  Google Scholar 

  61. Chaskar P, Zoete V, Röhrig UF (2017) On-the-Fly QM/MM docking with attracting cavities. J Chem Inf Model 57:73–84

    Article  CAS  PubMed  Google Scholar 

  62. Pecina A, Meier R, Fanfrlik J et al (2016) The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein-ligand interactions and implicit COSMO solvation. Chem Commun 52:3312–3315

    Article  CAS  Google Scholar 

  63. Lepšík M, Řezáč J, Kolář M et al (2013) The Semiempirical quantum mechanical scoring function for in silico drug design. ChemPlusChem 78:921–931

    Article  PubMed  CAS  Google Scholar 

  64. Stewart JJP (2007) Optimization of parameters for Semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Řezáč J, Hobza P (2011) A halogen-bonding correction for the semiempirical PM6 method. Chem Phys Lett 506:286–289

    Article  CAS  Google Scholar 

  66. Řezáč J, Hobza P (2012) Advanced corrections of hydrogen bonding and dispersion for Semiempirical quantum mechanical methods. J Chem Theory Comput 8:141–151

    Article  PubMed  CAS  Google Scholar 

  67. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  68. Kolar M, Fanfrlik J, Lepsik M et al (2013) Assessing the accuracy and performance of implicit solvent models for drug molecules: conformational ensemble approaches. J Phys Chem B 117:5950–5962

    Article  CAS  PubMed  Google Scholar 

  69. Pecina A, Haldar S, Fanfrlik J et al (2017) SQM/COSMO scoring function at the DFTB3-D3H4 level: unique identification of native protein-ligand poses. J Chem Inf Model 57:127–132

    Article  CAS  PubMed  Google Scholar 

  70. Ajani H, Pecina A, Eyrilmez SM et al (2017) Superior performance of the SQM/COSMO scoring functions in native pose recognition of diverse protein–ligand complexes in cognate docking. ACS. Omega 2:4022–4029

    Article  CAS  Google Scholar 

  71. Pecina A, Brynda J, Vrzal L et al (2018) Ranking power of the SQM/COSMO scoring function on carbonic anhydrase II-inhibitor complexes. ChemPhysChem 19:873–879

    Article  CAS  PubMed  Google Scholar 

  72. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  73. Bowers KJ, Chow E, Xu H et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: ACM/IEEE conference on supercomputing (SC06). ACM, Tampa, Florida

    Google Scholar 

  74. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  76. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pu C, Yan G, Shi J et al (2017) Assessing the performance of docking scoring function, FEP, MM-GBSA, and QM/MM-GBSA approaches on a series of PLK1 inhibitors. Medchemcomm 8:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ajani H, Jansa J, Kopruluoglu C et al (2018) Imidazo[1,2-c]pyrimidin-5(6H)-one as a novel core of cyclin-dependent kinase 2 inhibitors: synthesis, activity measurement, docking, and quantum mechanical scoring. J Mol Recognit 31:e2720

    Article  PubMed  CAS  Google Scholar 

  79. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  80. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  81. Burger SK, Thompson DC, Ayers PW (2011) Quantum mechanics/molecular mechanics strategies for docking pose refinement: distinguishing between binders and decoys in cytochrome C peroxidase. J Chem Inf Model 51:93–101

    Article  CAS  PubMed  Google Scholar 

  82. Cavasotto CN, Singh N (2008) Docking and high throughput docking: successes and the challenge of protein flexibility. Curr Comput Aided Drug Des 4:221–234

    Article  CAS  Google Scholar 

  83. Cozzini P, Kellogg GE, Spyrakis F et al (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51:6237–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Agency for the Promotion of Science and Technology (ANPCyT) (PICT-2014-3599 and PICT-2017-3767). CNC thanks Molsoft LLC (San Diego, CA) for providing an academic license for the ICM program. The authors thank the National System of High Performance Computing (Sistemas Nacionales de Computación de Alto Rendimiento (SNCAD)), the Centro de Computación de Alto Rendimiento (Computational Centre of High Performance Computing (CeCAR)), and the Centro de Cálculo de Alto Desempeño (Universidad Nacional de Córdoba) for granting the use of their computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio N. Cavasotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aucar, M.G., Cavasotto, C.N. (2020). Molecular Docking Using Quantum Mechanical-Based Methods. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0282-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0281-2

  • Online ISBN: 978-1-0716-0282-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics