Advertisement

Using Dali for Protein Structure Comparison

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2112)

Abstract

The exponential growth in the number of newly solved protein structures makes correlating and classifying the data an important task. Distance matrix alignment (Dali) is used routinely by crystallographers worldwide to screen the database of known structures for similarity to newly determined structures. Dali is easily accessible through the web server (http://ekhidna.biocenter.helsinki.fi/dali). Alternatively, the program may be downloaded and pairwise comparisons performed locally on Linux computers.

Key words

Classification of protein folds Database searching Distance geometry Pattern recognition Protein structure alignment 

References

  1. 1.
    Valleau D, Quaile AT, Cui H, Xu X, Evdokima E, Chang C, Cuff ME, Urbanus ML, Houliston S, Arrowsmith CH, Ensminger AW, Savchenko A (2018) Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Rep 23:568–583CrossRefGoogle Scholar
  2. 2.
    Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 19:381–389CrossRefGoogle Scholar
  3. 3.
    Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123–138CrossRefGoogle Scholar
  4. 4.
    Dietmann S, Holm L (2001) Identification of homology in protein structure classification. Nat Struct Biol 8:953–957CrossRefGoogle Scholar
  5. 5.
    Fox NK, Brenner SE, Chandonia JM (2014) SCOPE: structural classification of proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42:D304–D309CrossRefGoogle Scholar
  6. 6.
    Holm L, Sander C (1998) Dictionary of recurrent domains in protein structures. Proteins 33:88–96CrossRefGoogle Scholar
  7. 7.
    Holm L, Sander C (1994) Parser for protein folding units. Proteins 19:256–268CrossRefGoogle Scholar
  8. 8.
    Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22:2577–2637CrossRefGoogle Scholar
  9. 9.
    Falicov A, Cohen FE (1996) A surface of minimum area metric for the structural comparison of proteins. J Mol Biol 258:871–892CrossRefGoogle Scholar
  10. 10.
    Holm L, Sander C (1995) Fast protein structure database searches at 90% reliability. ISMB 3:179–187PubMedGoogle Scholar
  11. 11.
    Holm L, Sander C (1996) Mapping the protein universe. Science 273:595–602CrossRefGoogle Scholar
  12. 12.
    Wohlers I, Andonov R, Klau GW (2013) DALIX: optimal DALI protein structure alignment. IEEE/ACM Trans Comput Biol Bioinform 10:26–36CrossRefGoogle Scholar
  13. 13.
    Holm L, Kääriäinen S, Rosenström P, Schenkel A (2008) Searching protein structure databases with DaliLite v.3. Bioinformatics 24:2780–2781CrossRefGoogle Scholar
  14. 14.
    Somervuo P, Holm L (2015) SANSparallel: interactive homology search against Uniprot. Nucleic Acids Res 43:W24–W29CrossRefGoogle Scholar
  15. 15.
    Törönen P, Medlar A, Holm L (2018) PANNZER2: a rapid functional annotation webserver. Nucleic Acids Res 46:W84–W88CrossRefGoogle Scholar
  16. 16.
    Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr A 34:827–828CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of Biological and Environmental Sciences and Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations