Skip to main content

Artificial Antigen Presentosomes for T Cell Activation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2111))

Abstract

CD8+ T cells constitute an essential component of the adaptive immune system. They are activated through T cell receptor (TCR) recognizing antigenic peptides presented by MHC class I molecules expressed by antigen-presenting cells, such as dendritic cells (DCs). Harvesting a large number of activated, antigen-specific human CD8+ T cells for functional studies has been a laborious task for immunologists, largely because of the variables associated with DC preparations. Here we describe a robust, cost-effective DC-free antigen-presenting system capable of generating a large number of antigen-specific CD8+ T cells in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hennecke J, Wiley DC (2001) T cell receptor-MHC interactions up close. Cell 104:1–4

    Article  CAS  Google Scholar 

  2. Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM (2013) T cell responses: naive to memory and everything in between. Adv Physiol Educ 37:273–283

    Article  Google Scholar 

  3. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:221–242

    Google Scholar 

  4. Zhang N, Bevan MJ (2011) CD8+ T cells: foot soldiers of the immune system. Immunity 35:161–168

    Article  CAS  Google Scholar 

  5. Tafuro S, Meier UC, Dunbar PR, Jones EY, Layton GT, Hunter MG et al (2001) Reconstitution of antigen presentation in HLA class I-negative cancer cells with peptide-beta2m fusion molecules. Eur J Immunol 31:440–449

    Article  CAS  Google Scholar 

  6. Shen C, Chang CC, Zhang J, Guo W, Xia L, Meng F et al (2006) Structural and functional characterization of peptide-beta2m fused HLA-A2/MART1 (27-35) complexes. Biochem Biophys Res Commun 342:57–65

    Article  CAS  Google Scholar 

  7. Tsujisaki M, Sakaguchi K, Igarashi M, Richiardi P, Perosa F, Ferrone S (1988) Fine specificity and idiotype diversity of the murine anti-HLA-A2, A28 monoclonal antibodies CR11–351 and KS1. Transplantation 45:632–639 

    Article  CAS  Google Scholar 

  8. Lampson LA, Fisher CA, Whelan JP (1983) Striking paucity of HLA-A, B, C and beta 2-microglobulin on human neuroblastoma cell lines. J Immunol 130:2471–2478

    CAS  PubMed  Google Scholar 

  9. Wang X, Liang B, Rebmann V, Lu J, Celis E, Kageshita T et al (2003) Specificity and functional characteristics of anti-HLA-A mAbs LGIII-147.4.1 and LGIII-220.6.2. Tissue Antigens 62:139–148

    Article  CAS  Google Scholar 

  10. Palmisano GL, Pistillo MP, Capanni P, Pera C, Nicolò G, Salvi S et al (2001) Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 62:133–139

    Article  CAS  Google Scholar 

  11. Rebmann V, Pfeiffer K, Pässler M, Ferrone S, Maier S, Weiss E et al (1999) Detection of soluble HLA-G molecules in plasma and amniotic fluid. Tissue Antigens 53:14–22

    Article  CAS  Google Scholar 

  12. Desai SA, Wang X, Noronha EJ, Zhou Q, Rebmann V, Grosse-Wilde H et al (2000) Structural relatedness of distinct determinants recognized by monoclonal antibody TP25.99 on beta2-microglobulin-associated and beta2-microglobulin-free HLA class I heavy chains. J Immunol 165:3275–3283

    Article  CAS  Google Scholar 

  13. Lee SP, Tierney RJ, Thomas WA, Brooks JM, Rickinson AB (1997) Conserved CTL epitopes within EBV latent membrane protein 2: a potential target for CTL-based tumor therapy. J Immunol 158:3325–3334

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Council grant (NSC 98-2320-B-007-004-MY3) and the Ministry of Science and Technology grants (MOST 106-2320-B-007-001; MOST 107-2320-B-007-002) to C.-C. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chung Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pang, YG., Chang, CC. (2020). Artificial Antigen Presentosomes for T Cell Activation. In: Liu, C. (eds) T-Cell Receptor Signaling. Methods in Molecular Biology, vol 2111. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0266-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0266-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0265-2

  • Online ISBN: 978-1-0716-0266-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics