Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743
CAS
CrossRef
Google Scholar
Gold KS, Brückner K (2015) Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 27(6):357–368
CAS
CrossRef
Google Scholar
Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in drosophila. Dev Biol 230:243–257
CAS
CrossRef
Google Scholar
Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M et al (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in drosophila. Cell 123:335–346
CAS
CrossRef
Google Scholar
Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA et al (2007) A Model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3:e173
CrossRef
Google Scholar
Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C et al (2011) Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 108:17378–17383
CAS
CrossRef
Google Scholar
Nehme NT, Quintin J, Cho JH, Lee J, Lafarge MC, Kocks C et al (2011) Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections. PLoS One 6:e14743
CAS
CrossRef
Google Scholar
Quintin J, Asmar J, Matskevich AA, Lafarge MC, Ferrandon D (2013) The Drosophila toll pathway controls but does not clear Candida glabrata infections. J Immunol 190:2818–2827
CAS
CrossRef
Google Scholar
Pearson AM, Baksa K, Rämet M, Protas M, McKee M, Brown D et al (2003) Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect 5(10):815–824
CAS
CrossRef
Google Scholar
Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10:781–784
CAS
CrossRef
Google Scholar
Nazario-Toole AE, Wu LP (2019) Assessing the cellular immune response of the fruit Fly, Drosophila melanogaster, using an in vivo phagocytosis assay. J Vis Exp 146
Google Scholar
Hoffmann D (1976) Role of phagocytosis and soluble antibacterial factors in experimental immunization of Locusta migratoria. C R Acad Hebd Seances Acad Sci D 282:1021–1024
CAS
PubMed
Google Scholar
Rutschmann S, Kilinc A, Ferrandon D (2002) The Toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J Immunol 168:1542–1546
CAS
CrossRef
Google Scholar
Defaye A, Evans I, Crozatier M, Wood W, Lemaitre B, Leulier F (2009) Genetic ablation of drosophila phagocytes reveals their contribution to both development and resistance to bacterial infections. J Innate Immun 1:322–334
CAS
CrossRef
Google Scholar
Charroux B, Royet J (2009) Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the drosophila immune response. Proc Natl Acad Sci U S A 106:9797–9802
CAS
CrossRef
Google Scholar
Haller S, Franchet A, Hakkim A, Chen J, Drenkard E, Yu S et al (2018) Quorum-sensing regulator RhlR but not its autoinducer RhlI enables pseudomonas to evade opsonization. EMBO Rep 19(5):e44880
CrossRef
Google Scholar
Avet-Rochex A, Bergeret E, Attree I, Meister M, Fauvarque MO (2005) Suppression of drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa. Cell Microbiol 7:799–810
CAS
CrossRef
Google Scholar
Avet-Rochex A, Perrin J, Bergeret E, Fauvarque MO (2007) Rac2 is a major actor of drosophila resistance to Pseudomonas aeruginosa acting in phagocytic cells. Genes Cells 12:1193–1204
CAS
CrossRef
Google Scholar
Sinenko SA, Mathey-Prevot B (2004) Increased expression of drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene 23:9120–9128
CAS
CrossRef
Google Scholar
Haller S, Limmer S, Ferrandon D (2014) Assessing pseudomonas virulence with a nonmammalian host: Drosophila melanogaster. Methods Mol Biol 1149:723–740
CrossRef
Google Scholar
Lestradet M, Lee K-Z, Ferrandon D (2014) Drosophila as a model for intestinal infections. Methods Mol Biol 1197:11–40
CAS
CrossRef
Google Scholar
Kurucz E, Markus R, Zsamboki J, Folkl-Medzihradszky K, Darula Z, Vilmos P et al (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in drosophila plasmatocytes. Curr Biol 17:649–654
CAS
CrossRef
Google Scholar
Bosch PS, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, et al (2019) Blood cells of adult Drosophila do not expand, but control survival after bacterial infection by induction of Drosocin around their reservoir at the respiratory epithelia. bioRxiv. 578864
Google Scholar
Datta SK, Okamoto S, Hayashi T, Shin SS, Mihajlov I, Fermin A et al (2006) Vaccination with irradiated listeria induces protective T cell immunity. Immunity 25:143–152
CAS
CrossRef
Google Scholar
Wheeler RT, Fink GRA (2006) Drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2(4):e35
CrossRef
Google Scholar
Regan JC, Brandão AS, Leitão AB, Mantas Dias AR, Sucena E, Jacinto A et al (2013) Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in drosophila. PLoS Pathog 9(10):e1003720
CrossRef
Google Scholar
Pelts M, Pandya SM, Oh CJ, Model MA (2011) Thickness profiling of formaldehyde-fixed cells by transmission-through-dye microscopy. BioTechniques 50(6):389–396
CAS
CrossRef
Google Scholar