Genome-Wide PERV Inactivation in Pigs Using CRISPR/Cas9

  • Marc GüellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2110)


The shortage of organs for transplantation is probably the biggest unmet medical need. A potential problem with the clinical use of porcine xenografts is the risk that porcine endogenous retroviruses (PERVs) could infect human cells. In the past, we determined the PERV copy number in the porcine kidney epithelial cell line PK15 and in primary fibroblasts. Using CRISPR-Cas9, we disrupted the catalytic center of pol, which is essential for virus replication. Next, we isolated cells in which 100% of the PERV elements had been inactivated. This method enables the possibility of eradicating PERVs in vitro for application to pig-to-human xenotransplantation. Here we describe the methodological bases of this work.

Key words

CRISPR Cas9 Xenotransplantation PERVs Pig genome editing 


  1. 1.
    Ekser B, Rigotti P, Gridelli B, Coope DKC (2009) Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol 21:87–92. Scholar
  2. 2.
    ILAR J (1997) Xenotransplantation: science, ethics, and public policy. ILAR J 38:49–51CrossRefGoogle Scholar
  3. 3.
    Schuurman H-J (2009) The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—chapter 2: source pigs. Xenotransplantation 16:215–222. Scholar
  4. 4.
    Weiss RA (2013) On the concept and elucidation of endogenous retroviruses. Philos Trans R Soc Lond Ser B Biol Sci 368:20120494. Scholar
  5. 5.
    Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286. Scholar
  6. 6.
    Lee D, Lee J, Yoon J-K et al (2011) Rapid determination of perv copy number from porcine genomic DNA by real-time polymerase chain reaction. Anim Biotechnol 22:175–180. Scholar
  7. 7.
    Heneine W, Tibell A, Switzer WM et al (1998) No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet 352:695–699. Scholar
  8. 8.
    Dinsmore JH, Manhart C, Raineri R, Jacoby DB, Moore A (2000) No evidence for infection of human cells with porcine endogenous retrovirus (PERV) after exposure to porcine fetal neuronal cells. Transplantation 70:1382–1389CrossRefGoogle Scholar
  9. 9.
    Takeuchi Y, Patience C, Magre S et al (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 72:9986–9991CrossRefGoogle Scholar
  10. 10.
    Wood JC, Quinn G, Suling KM et al (2004) Identification of exogenous forms of human-tropic porcine endogenous retrovirus in miniature Swine. J Virol 78:2494–2501CrossRefGoogle Scholar
  11. 11.
    Ramsoondar J, Vaught T, Ball S et al (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16:164–180. Scholar
  12. 12.
    Güell M, Yang L, Church GM (2014) Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics. 30(20):2968–2970. Scholar
  13. 13.
    Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 30(5):614–620. Scholar
  14. 14.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33. Scholar
  15. 15.
    Semaan M, Ivanusic D, Denner J (2015) Cytotoxic effects during knock out of multiple porcine endogenous retrovirus (PERV) sequences in the pig genome by zinc finger nucleases (ZFN). PLoS One 10:e0122059. Scholar
  16. 16.
    Dunn D, DaCosta M, Harris M, Idriss R, O’Brien A (2015) Genetic modification of porcine endogenous retrovirus (PERV) sequences in cultured pig cells as a model for decreasing infectious risk in xenotransplantation. FASEB J 29:LB761Google Scholar
  17. 17.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. Scholar
  18. 18.
    Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. Scholar
  19. 19.
    Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. Scholar
  20. 20.
    Yang L, Güell M, Niu D et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–1104. Scholar
  21. 21.
    Sarafianos SG, Marchand B, Das K et al (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713. Scholar
  22. 22.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. Scholar
  23. 23.
    Wilson MH, Coates CJ, George AL (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145CrossRefGoogle Scholar
  24. 24.
    Niu D, Wei H-J, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357:1303–1307. Scholar
  25. 25.
    Wang G, McCain ML, Yang L et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20:616–623. Scholar
  26. 26.
    Giraldo AM, Ball S, Bondioli KR (2012) Production of transgenic and knockout pigs by somatic cell nuclear transfer. Methods Mol Biol 885:105–123. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Translational Synthetic Biology Laboratory, Department of Experimental and Health SciencesPompeu Fabra University, PRBBBarcelonaSpain

Personalised recommendations