Skip to main content

Genome-Wide PERV Inactivation in Pigs Using CRISPR/Cas9

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2110))

Abstract

The shortage of organs for transplantation is probably the biggest unmet medical need. A potential problem with the clinical use of porcine xenografts is the risk that porcine endogenous retroviruses (PERVs) could infect human cells. In the past, we determined the PERV copy number in the porcine kidney epithelial cell line PK15 and in primary fibroblasts. Using CRISPR-Cas9, we disrupted the catalytic center of pol, which is essential for virus replication. Next, we isolated cells in which 100% of the PERV elements had been inactivated. This method enables the possibility of eradicating PERVs in vitro for application to pig-to-human xenotransplantation. Here we describe the methodological bases of this work.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ekser B, Rigotti P, Gridelli B, Coope DKC (2009) Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol 21:87–92. https://doi.org/10.1016/j.trim.2008.10.005

    Article  PubMed  Google Scholar 

  2. ILAR J (1997) Xenotransplantation: science, ethics, and public policy. ILAR J 38:49–51

    Article  Google Scholar 

  3. Schuurman H-J (2009) The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—chapter 2: source pigs. Xenotransplantation 16:215–222. https://doi.org/10.1111/j.1399-3089.2009.00541.x

    Article  PubMed  Google Scholar 

  4. Weiss RA (2013) On the concept and elucidation of endogenous retroviruses. Philos Trans R Soc Lond Ser B Biol Sci 368:20120494. https://doi.org/10.1098/rstb.2012.0494

    Article  Google Scholar 

  5. Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286. https://doi.org/10.1038/nm0397-282

    Article  CAS  PubMed  Google Scholar 

  6. Lee D, Lee J, Yoon J-K et al (2011) Rapid determination of perv copy number from porcine genomic DNA by real-time polymerase chain reaction. Anim Biotechnol 22:175–180. https://doi.org/10.1080/10495398.2011.595294

    Article  CAS  PubMed  Google Scholar 

  7. Heneine W, Tibell A, Switzer WM et al (1998) No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet 352:695–699. https://doi.org/10.1016/S0140-6736(98)07145-1

    Article  CAS  PubMed  Google Scholar 

  8. Dinsmore JH, Manhart C, Raineri R, Jacoby DB, Moore A (2000) No evidence for infection of human cells with porcine endogenous retrovirus (PERV) after exposure to porcine fetal neuronal cells. Transplantation 70:1382–1389

    Article  CAS  Google Scholar 

  9. Takeuchi Y, Patience C, Magre S et al (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 72:9986–9991

    Article  CAS  Google Scholar 

  10. Wood JC, Quinn G, Suling KM et al (2004) Identification of exogenous forms of human-tropic porcine endogenous retrovirus in miniature Swine. J Virol 78:2494–2501

    Article  CAS  Google Scholar 

  11. Ramsoondar J, Vaught T, Ball S et al (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16:164–180. https://doi.org/10.1111/j.1399-3089.2009.00525.x

    Article  PubMed  Google Scholar 

  12. Güell M, Yang L, Church GM (2014) Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics. 30(20):2968–2970. https://doi.org/10.1093/bioinformatics/btu427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 30(5):614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  PubMed  Google Scholar 

  14. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33. https://doi.org/10.1016/S0092-8674(00)80620-0

    Article  CAS  PubMed  Google Scholar 

  15. Semaan M, Ivanusic D, Denner J (2015) Cytotoxic effects during knock out of multiple porcine endogenous retrovirus (PERV) sequences in the pig genome by zinc finger nucleases (ZFN). PLoS One 10:e0122059. https://doi.org/10.1371/journal.pone.0122059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunn D, DaCosta M, Harris M, Idriss R, O’Brien A (2015) Genetic modification of porcine endogenous retrovirus (PERV) sequences in cultured pig cells as a model for decreasing infectious risk in xenotransplantation. FASEB J 29:LB761

    Google Scholar 

  17. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang L, Güell M, Niu D et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–1104. https://doi.org/10.1126/science.aad1191

    Article  CAS  PubMed  Google Scholar 

  21. Sarafianos SG, Marchand B, Das K et al (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713. https://doi.org/10.1016/j.jmb.2008.10.071

    Article  CAS  PubMed  Google Scholar 

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilson MH, Coates CJ, George AL (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145

    Article  CAS  Google Scholar 

  24. Niu D, Wei H-J, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357:1303–1307. https://doi.org/10.1126/science.aan4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang G, McCain ML, Yang L et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20:616–623. https://doi.org/10.1038/nm.3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giraldo AM, Ball S, Bondioli KR (2012) Production of transgenic and knockout pigs by somatic cell nuclear transfer. Methods Mol Biol 885:105–123. https://doi.org/10.1007/978-1-61779-845-0_8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Güell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Güell, M. (2020). Genome-Wide PERV Inactivation in Pigs Using CRISPR/Cas9. In: Costa, C. (eds) Xenotransplantation. Methods in Molecular Biology, vol 2110. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0255-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0255-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0254-6

  • Online ISBN: 978-1-0716-0255-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics