Skip to main content

Introduction: The Present Status of Xenotransplantation Research

  • Protocol
  • First Online:
Xenotransplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2110))

Abstract

There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.

Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CIITA:

Dominant-negative mutant major histocompatibility complex (MHC) class II transactivator gene

CMAH-KO:

Cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene knockout

EPCR:

Endothelial cell protein C receptor

Gal:

Galactose-α1,3-galactose

GTKO:

α1,3-galacosyltransferase gene knockout

hCRP:

Human complement regulatory protein

HLA:

Human leukocyte antigen

HO-1:

Hemeoxygenase-1

Neu5Gc:

N-glycolylneuraminic acid

PERV:

Porcine endogenous retrovirus

SLA:

Swine leukocyte antigen

TKO:

Triple gene knockout (pigs that do not express the three known pig xenoantigens, Gal, Neu5Gc, or Sda)

References

  1. Ekser B, Cooper DKC, Tector AJ (2015) The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg 23(Pt B):199–204

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cooper DKC (ed) (2018) Recollections of pioneers in xenotransplantation research. Nova Science Publishers, New York

    Google Scholar 

  3. Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ (2015) Recent advances in genome editing and creation of genetically modified pigs. Int J Surg 23(Pt B):217–222

    Article  PubMed  Google Scholar 

  4. Cooper DKC, Ekser B, Ramsoondar J, Phelps C, Ayares D (2016) The role of genetically-engineered pigs in xenotransplantation research. J Pathol 238:288–299

    Article  PubMed  Google Scholar 

  5. Samy KP, Butler JR, Li P, Cooper DKC, Ekser B (2017) The role of costimulation blockade in solid organ and islet xenotransplantation. J Immunol Res 2017:8415205. https://doi.org/10.1155/2017/8415205. Corrigendum J Immunol Res 2018 doi.org/10.1155/2018/6343608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lexer G, Cooper DKC, Rose AG, Wicomb WN, Rees J, Keraan M, Du Toit E (1986) Hyperacute rejection in a discordant (pig to baboon) cardiac xenograft model. J Heart Transplant 5:411–418

    CAS  PubMed  Google Scholar 

  7. Cooper DKC, Human PA, Lexer G et al (1988) Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. J Heart Transplant 7:238–246

    CAS  PubMed  Google Scholar 

  8. Cooper DKC, Ezzelarab MB, Hara H et al (2016) The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 23:83–105

    Article  PubMed  Google Scholar 

  9. Fodor WL, Williams BL, Matis LA et al (1994) Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci U S A 91:11153–11157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. White DJG, Langford GA, Cozzi E et al (1995) Production of pigs trangenic for human DAF: a strategy for xenotransplantation. Xenotransplantation 2:213–217

    Article  Google Scholar 

  11. Cozzi E, White DJ (1995) The generation of transgenic pigs as potential organ donors for humans. Nat Med 1:964–966

    Article  CAS  PubMed  Google Scholar 

  12. Costa C, Zhao L, Burton WV et al (1999) Expression of the human alpha1,2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis. FASEB J 13:1762–1773

    Article  CAS  PubMed  Google Scholar 

  13. Costa C, Zhao L, Burton WV et al (2002) Transgenic pigs designed to express human CD59 and H-transferase to avoid humoral xenograft rejection. Xenotransplantation 9:45–57

    Article  PubMed  Google Scholar 

  14. Cozzi E, Vial C, Ostlie D et al (2003) Maintenance triple immunosuppression with cyclosporin A, mycophenolate sodium and steroids allows prolonged survival of primate recipients of hDAF porcine renal xenografts. Xenotransplantation 10:300–310

    Article  PubMed  Google Scholar 

  15. Baldan N, Rigotti P, Calabrese F et al (2004) Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events? Am J Transplant 4:475–481

    Article  PubMed  Google Scholar 

  16. Lambrigts D, Sachs DH, Cooper DK (1998) Discordant organ xenotransplantation in primates - world experience and current status. Transplantation 66:547–561

    Article  CAS  PubMed  Google Scholar 

  17. Cooper DK, Satyananda V, Ekser B et al (2014) Progress in pig-to-nonhuman primate transplantation models (1998-2013): a comprehensive review of the literature. Xenotransplantation 21:397–419

    Article  PubMed  PubMed Central  Google Scholar 

  18. Good AH, Cooper DKC, Malcolm AJ et al (1992) Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in man. Transplant Proc 24:559–562

    CAS  PubMed  Google Scholar 

  19. Cooper DKC, Koren E, Oriol R (1993) Genetically engineered pigs. Lancet 342:682–683

    Article  CAS  PubMed  Google Scholar 

  20. Phelps CJ, Koike C, Vaught TD et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414

    Article  CAS  PubMed  Google Scholar 

  21. Kolber-Simonds D, Lai L, Watt SR et al (2004) Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci U S A 101:7335–7340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuwaki K, Tseng YL, Dor FJ et al (2005) Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11:29–31

    Article  CAS  PubMed  Google Scholar 

  23. Tseng YL, Kuwaki K, Dor FJ et al (2005) α 1,3-galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching six months. Transplantation 80:1493–1500

    Article  CAS  PubMed  Google Scholar 

  24. Yamada K, Yazawa K, Shimizu A et al (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of α1,3- galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11:32–34

    Article  CAS  PubMed  Google Scholar 

  25. Shimizu A, Hisashi Y, Kuwaki K et al (2008) Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. Am J Pathol 172:1471–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shimizu A, Yamada K, Robson SC, Sachs DH, Colvin RB (2012) Pathologic characteristics of transplanted kidney xenografts. J Am Soc Nephrol 23:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ierino FL, Kozlowski T, Siegel JB et al (1998) Disseminated intravascular coagulation in association with the delayed rejection of pig-to-baboon renal xenografts. Transplantation 66:1439–1450

    Article  CAS  PubMed  Google Scholar 

  28. Kozlowski T, Shimizu A, Lambrigts D et al (1999) Porcine kidney and heart transplantation in baboons undergoing a tolerance induction regimen and antibody adsorption. Transplantation 67:18–30

    Article  CAS  PubMed  Google Scholar 

  29. Houser SL, Kuwaki K, Knosalla C et al (2004) Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation 11:416–425

    Article  PubMed  Google Scholar 

  30. Kuwaki K, Knosalla C, Dor FJ et al (2004) Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb-based regimen. Am J Transplant 4:363–372

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu A, Yamada K, Yamamoto S et al (2005) Thrombotic microangiopathic glomerulopathy in human decay accelerating factor-transgenic swine-to-baboon kidney xenografts. J Am Soc Nephrol 16:2732–2745

    Article  CAS  PubMed  Google Scholar 

  32. Mohiuddin MM, Singh AK, Corcoran PC et al (2014) One-year heterotopic cardiac xenograft survival in a pig to baboon model. Am J Transplant 14:488–489

    Article  CAS  PubMed  Google Scholar 

  33. Mohiuddin MM, Singh AK, Corcoran PC et al (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwase H, Liu H, Wijkstrom M et al (2015) Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation 22:302–309

    Article  PubMed  PubMed Central  Google Scholar 

  35. Iwase H, Hara H, Ezzelarab M et al (2017) Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation 24. https://doi.org/10.1111/xen.12293

  36. Wang L, Cooper DKC, Burdorf L, Wang Y, Iwase H (2018) Overcoming coagulation dysregulation in pig solid organ transplantation in nonhuman primates: recent progress. Transplantation 10:1050–1058

    Article  Google Scholar 

  37. Ezzelarab MB, Ekser B, Azimzadeh A et al (2015) Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation 22:32–47

    Article  PubMed  Google Scholar 

  38. Ezzelarab MB, Cooper DKC (2015) Systemic inflammation in xenograft recipients (SIXR): a new paradigm in pig-to-primate xenotransplantation? Int J Surg 23(Pt B):301–305

    Article  PubMed  PubMed Central  Google Scholar 

  39. Iwase H, Ekser B, Zhou H et al (2015) Further evidence for sustained systemic inflammation in xenograft recipients (SIXR). Xenotransplantation 22:399–405

    Article  PubMed  PubMed Central  Google Scholar 

  40. Iwase H, Liu H, Li T et al (2017) Therapeutic regulation of systemic inflammation in xenograft recipients. Xenotransplantation 24(2). https://doi.org/10.1111/xen.12296

  41. Li T, Lee W, Hara H et al (2017) An investigation of extracellular histones in pig-to-baboon organ xenotransplantation. Transplantation 101:2330–2339. https://doi.org/10.1097/TP.0000000000001676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li T, Iwase H, Hara H, Long C, Ezzelarab M, Wang Y, Cooper DK (2018) Serum amyloid A as a marker of inflammation in xenotransplantation. Eur J Inflamm. https://doi.org/10.1177/2058739218780046

  43. Oropeza M, Petersen B, Carnwath JW et al (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16:522–534

    Article  PubMed  Google Scholar 

  44. Petersen B, Lucas-Hahn A, Lemme E et al (2010) Generation and characterization of pigs transgenic for human hemeoxygenase-1 (hHO-1). Xenotransplantation 17:102–103

    Article  Google Scholar 

  45. Petersen B, Ramackers W, Lucas-Hahn A et al (2011) Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18:355–368

    Article  PubMed  Google Scholar 

  46. Cooper DKC, Ezzelarab MB, Iwase H, Hara H (2018) Perspectives on the optimal genetically-engineered pig in 2018 for initial clinical trials of kidney or heart xenotransplantation. Transplantation 102(12):1974–1982. https://doi.org/10.1097/TP.0000000000002443

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bouhours D, Pourcel C, Bouhours JE (1996) Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreactive antibodies (gal alpha1-3Gal), blood group H determinant and N-glycolylneuraminic acid. Glycoconj J 13:947–953

    Article  CAS  PubMed  Google Scholar 

  48. Zhu A, Hurst R (2002) Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 9:376–381

    Article  PubMed  Google Scholar 

  49. Byrne GW, Du Z, Stalboerger P, Kogelberg H, McGregor CG (2014) Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21:543–554

    Article  PubMed  PubMed Central  Google Scholar 

  50. Estrada JL, Martens G, Li P, Adams A et al (2015) Evaluation of human and non-human primate antibody binding to pig cells lacking GTA1/CMAH/beta4GALNT2 genes. Xenotransplantation 22:194–202

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lutz AJ, Li P, Estrada JL et al (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20:27–35

    Article  PubMed  Google Scholar 

  52. Adams AB, Kim SC, Martens GR et al (2018) Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann Surg 268:564–573. https://doi.org/10.1097/SLA.0000000000002977

    Article  PubMed  Google Scholar 

  53. Li Q, Shaikh S, Iwase H et al (2019) An investigation of carbohydrate antigen expression and anti-pig antibodies in New World capuchin monkeys. Xenotransplantation 26(3):e12498

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wilhite T, Ezzelarab C, Hara H et al (2012) The effect of Gal expression on pig cells on the human T-cell xenoresponse. Xenotransplantation 19:56–63

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ezzelarab MB, Ayares D, Cooper DKC (2015) Transgenic expression of human CD46: does it reduce the primate T-cell response to pig endothelial cells? Xenotransplantation 22:487–489

    Article  PubMed  Google Scholar 

  56. Bühler L, Awwad M, Basker M et al (2000) High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 69:2296–2304

    Article  PubMed  Google Scholar 

  57. Higginbotham L, Mathews D, Breeden C et al (2015) Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation 22:221–230

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yamamoto T, Li Q, Hara H et al (2018) B cell phenotypes in baboons with pig artery patch grafts receiving conventional immunosuppressive therapy. Transpl Immunol 51:12–20. https://doi.org/10.1016/j.trim.2018.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamamoto T, Hara H, Wang L, et al (2018) Life-supporting kidney xenotransplantation from genetically-engineered pigs in baboons: a comparison of two immunosuppressive regimens. Transplantation. 2019 Jun 24. doi:10.1097/TP2796 [Epub ahead of print]

    Google Scholar 

  60. Ezzelarab C, Ayares D, Cooper DK et al (2012) Human T-cell proliferation in response to thrombin-activated GTKO pig endothelial cells. Xenotransplantation 19:311–316

    Article  PubMed  PubMed Central  Google Scholar 

  61. Reyes LM, Estrada JL, Wang ZY et al (2014) Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193:5751–5757

    Article  CAS  PubMed  Google Scholar 

  62. Hara H, Witt W, Crossley T et al (2013) Human dominant-negative class II transactivator transgenic pigs – effect on the human anti-pig T cell immune response and immune status. Immunology 140:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iwase H, Ekser B, Satyananda V et al (2015) Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs. Transpl Immunol 32:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martens GR, Reyes LM, Butler JR et al (2017) Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs. Transplantation 101:e86–e92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ladowski JM, Reyes LM, Martens GR et al (2018) Swine leukocyte antigen class II is a xenoantigen. Transplantation 102:248–254

    Article  CAS  Google Scholar 

  66. Ladowski JM, Martens GR, Reyes LM et al (2018) Examining the biosynthesis and xenoantigenicity of class II swine leukocyte antigen protein. J Immunol 200:2957–2964

    Article  CAS  PubMed  Google Scholar 

  67. Phelps CJ, Ball SF, Vaught TD et al (2009) Production and characterization of transgenic pigs expressing porcine CTLA4-Ig. Xenotransplantation 16:477–485

    Article  PubMed  Google Scholar 

  68. Klymiuk N, van Buerck L, Bähr A et al (2012) Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 61:1527–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Solhjou Z, Athar H, Xu Q et al (2015) Emerging therapies targeting intra-organ inflammation in transplantation. Am J Transplant 15:305–311

    Article  CAS  PubMed  Google Scholar 

  70. Hara H, Iwase H, Miyagawa Y et al (2017) Reducing the inflammatory response by expressing human thrombomodulin in pigs. Xenotransplantation 24:19–20. (Abstract) (PL.3.11)

    Google Scholar 

  71. Gao H, Lu L, Zhao Y et al (2017) Human IL-6, IL-17, IL-1β and TNF-α differently regulate the expression of pro-inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells. Xenotransplantation 24(2). https://doi.org/10.1111/xen.12291

  72. Zhang G, Hara H, Yamamoto T et al (2018) Serum amyloid A as an indicator of impending xenograft failure. Int J Surg 60:283–290

    Article  PubMed  PubMed Central  Google Scholar 

  73. Langin M, Mayr T, Reichart B et al (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564:430–433. https://doi.org/10.1038/s41586-018-0765-z

    Article  CAS  PubMed  Google Scholar 

  74. Ekser B, Markmann JF, Tector AJ (2015) Current status of liver xenotransplantation. Int J Surg 23(Pt B):240–246

    Article  PubMed  Google Scholar 

  75. Kubicki N, Laird C, Burdorf L, Pierson RN III, Azimzadeh AM (2015) Current status of pig lung xenotransplantation. Int J Surg 23(Pt B):247–254. https://doi.org/10.1016/j.ijsu.2015.08.019

    Article  PubMed  Google Scholar 

  76. Cooper DKC, Dou K-F, Tao K-S, Yang Z-X, Tector AJ, Ekser B (2016) Pig liver xenotransplantation: a review of progress towards the clinic. Transplantation 100:2039–2047

    Article  PubMed  PubMed Central  Google Scholar 

  77. Laird C, Burdorf L, Pierson RN (2016) 3rd. Lung xenotransplantation: a review. Curr Opin Organ Transplant 21:272–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shah JA, Patel MS, Elias N et al (2017) Prolonged survival following pig-to-primate liver xenotransplantation utilizing exogenous coagulation factors and costimulation blockade. Am J Transplant 17:2178–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van der Windt DJ, Bottino R, Casu A et al (2009) Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant 9:2716–2726

    Article  CAS  PubMed  Google Scholar 

  80. Bottino R, Wijkstrom M, Van der Windt DJ et al (2014) Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant 14:2275–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shin JS, Kim JM, Kim JS et al (2015) Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets. Am J Transplant 15:2837–2850

    Article  CAS  PubMed  Google Scholar 

  82. Martin C, Plat M, Nerriere-Daguin V et al (2005) Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 14:373–384

    Article  CAS  PubMed  Google Scholar 

  83. Leveque X, Cozzi E, Naveilhan P, Neveu I (2011) Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Curr Opin Org Transplantation 16:190–194

    Article  CAS  Google Scholar 

  84. Choi HJ, Kim MK, Lee HJ et al (2011) Efficacy of pig-to-rhesus lamellar corneal xenotransplantation. Invest Ophthalmol Vis Sci 52:6643–6650

    Article  PubMed  Google Scholar 

  85. Zhang MC, Liu X, Jin Y, Jiang DL, Wei XS, Xie HT (2015) Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. Am J Transplant 15:1068–1075

    Article  PubMed  Google Scholar 

  86. Matsumoto S, Tan P, Baker J et al (2014) Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc 46:1992–1995

    Article  CAS  PubMed  Google Scholar 

  87. Cooper DKC, Matsumoto S, Abalovich A et al (2016) Progress in clinical encapsulated islet xenotransplantation. Transplantation 100:2301–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamamoto T, Iwase H, King TW, Hara H, Cooper DKC (2018) Skin xenotransplantation: historical review and clinical potential. Burns 44:1738–1749. https://doi.org/10.1016/j.burns.2018.02.029

    Article  PubMed  PubMed Central  Google Scholar 

  89. Smood B, Hara H, Wang Z-Y, Schoel LJ, Tector M, Cooper DKC (2019) Genetically-engineered pigs as sources for clinical red blood cell transfusion: what pathobiological barriers need to be overcome? Blood Rev 35:7–17

    Article  PubMed  PubMed Central  Google Scholar 

  90. Smood B, Hara H, Cleveland D, Cooper DKC (2019) In search of the ideal valve prosthesis: optimizing genetic modifications to prevent bioprosthetic valve degeneration. Ann Thorac Surg 108:624–635

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sommaggio R, Uribe-Herranz M, Marquina M, Costa C (2016) Xenotransplantation of pig chondrocytes: therapeutic potential and barriers for cartilage repair. Eur Cell Mater 32:24–39

    Article  CAS  PubMed  Google Scholar 

  92. Zhou M, Lu Y, Zhao C et al (2019) Circulating pig-specific DNA as a novel biomarker for monitoring xenograft rejection. Xenotransplantation 26(4):e12522

    PubMed  Google Scholar 

  93. Agbor-Enoh S, Chan JL, Singh A et al (2018) Circulating cell-free DNA as a biomarker of tissue injury: assessment in a cardiac xenotransplantation model. J Heart Lung Transplant 37:967–975

    Article  PubMed  PubMed Central  Google Scholar 

  94. Song Z, Cooper DKC, Cai Z, Mou L (2018) Expression and regulation profile of mature microRNA in the pig: relevance to xenotransplantation. Biomed Res Int 2018:2983908. https://doi.org/10.1155/2018/2983908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Byrne GW, Du Z, Sun Z, Asmann YW, McGregor CG (2011) Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 18:14–27

    Article  PubMed  Google Scholar 

  96. Iwase H, Klein E, Cooper DK (2018) Physiological aspects of pig kidney transplantation in primates. Comp Med 68:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Soin B, Ostlie D, Cozzi E et al (2000) Growth of porcine kidneys in their native and xenograft environment. Xenotransplantation 7:96–100

    Article  CAS  PubMed  Google Scholar 

  98. Tanabe T, Watanabe H, Shah JA et al (2017) Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation. Am J Transplant 17:1778–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hinrichs A, Klymiuk N, Reichart B et al (2017) Inactivation of the GHR gene – a strategy to overcome excess growth of orthotopic pig-to-baboon cardiac xenografts? Xenotransplantation 24:39–40. Abstract (#O6.2)

    Google Scholar 

  100. Iwase H, Yamamoto T, Cooper DKC (2019) Episodes of hypovolemia/dehydration in baboons with pig kidney transplants: a new syndrome of clinical importance? Xenotransplantation 28:e12472. https://doi.org/10.1111/xen.12472

    Article  Google Scholar 

  101. Cooper DKC, Tseng YL, Saidman SL (2004) Allo- and xeno-antibody cross-reactivity in transplantation. Transplantation 77:1–5

    Article  CAS  PubMed  Google Scholar 

  102. Hara H, Ezzelarab M, Rood PP et al (2006) Allosensitized humans are at no greater risk of humoral rejection of GT-KO pig organs than other humans. Xenotransplantation 13:357–365

    Article  PubMed  Google Scholar 

  103. Wong BS, Yamada K, Okumi M et al (2006) Allosensitization does not increase the risk of xenoreactivity to α1,3-Galactosyltransferase gene-knockout miniature swine in patients on transplantation waiting lists. Transplantation 82:314–319

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Z, Hara Z, Long C et al (2018) Immune responses of HLA-highly-sensitized and non-sensitized patients to genetically-engineered pig cells. Transplantation 102:e195–e204. https://doi.org/10.1097/TP.0000000000002060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li Q, Hara H, Breimer ME, Wang Y, Cooper DKC (2018) Is sensitization to pig antigens detrimental to subsequent allotransplantation? Xenotransplantation 25:e12393. https://doi.org/10.1111/xen.12393

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lunney JK (1994) Current status of the swine leukocyte antigen complex. Vet Immunol Immunopathol 43:19–28

    Article  CAS  PubMed  Google Scholar 

  107. Fishman JA (2018) Infectious disease risks in xenotransplantation. Am J Transplant 18:1857–1864

    Article  PubMed  Google Scholar 

  108. Dieckhoff B, Karlas A, Hofmann A et al (2007) Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Arch Virol 152:629–634

    Article  CAS  PubMed  Google Scholar 

  109. Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J (2008) Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 15:36–45

    Article  PubMed  Google Scholar 

  110. Ramsoondar J, Vaught T, Ball S et al (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16:164–180

    Article  PubMed  Google Scholar 

  111. Niu D, Wei HJ, Lin L et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cooper DKC, Pierson RN III, Hering BJ et al (2017) Regulation of clinical xenotransplantation – time for a reappraisal? Transplantation 102:1766–1769

    Article  Google Scholar 

  113. Jagdale A, Iwase H, Klein E, Cooper DKC (2018) Will donor-derived neoplasia be problematic after clinical pig organ or cell xenotransplantation. Xenotransplantation 9:e12469. https://doi.org/10.1111/xen.12469

    Article  Google Scholar 

  114. Ekser B, Gridelli B, Tector AJ, Cooper DKC (2009) Pig liver xenotransplantation as a bridge to allotransplantation in acute liver failure: which patients might benefit? Transplantation 88:1041–1049

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cooper DKC, Wijkstrom M, Hariharan S et al (2017) Selection of patients for initial clinical trials of solid organ xenotransplantation. Transplantation 101:1551–1558

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chan JL, Miller JG, Singh AK, Horvath KA, Corcoran PC, Mohiuddin MM (2018) Consideration of appropriate clinical applications for cardiac xenotransplantation. Clin Transpl 32:e13330. https://doi.org/10.1111/ctr.13330

    Article  Google Scholar 

  117. Jagdale A, Cooper DKC, Iwase H, Gaston RS (2018) Chronic dialysis in patients with end-stage renal disease: relevance to kidney xenotransplantation. Xenotransplantation 20:e12471. https://doi.org/10.1111/xen.12471

    Article  Google Scholar 

  118. Cleveland D, Banks CA, Hara H et al (2019) The case for cardiac xenotransplantation in neonates: is now the time to reconsider xenotransplantation for hypoplastic left heart syndrome? Pediatr Cardiol 40:437–444. https://doi.org/10.1007/s00246-018-1998-1

    Article  PubMed  Google Scholar 

  119. West LJ, Pollock-Barziv SM et al (2001) ABO-incompatible heart transplantation in infants. N Engl J Med 344:793–800

    Article  CAS  PubMed  Google Scholar 

  120. West LJ (2005) Targeting antibody-mediated rejection in the setting of ABO-incompatible infant heart transplantation: graft accommodation vs. B cell tolerance. Curr Drug Targets Cardiovasc Haematol Disord 5:223–232

    Article  CAS  PubMed  Google Scholar 

  121. Cooper DKC, Hara H, Iwase H, Banks CA, Cleveland D (2018) An approach to induction of tolerance to pig cardiac xenografts in neonates. Xenotransplantation 20:e12454. https://doi.org/10.1111/xen.12454

    Article  Google Scholar 

  122. Saari R, Cooper DKC (2017) Financial aspects of organ procurement from deceased donors in the USA – relevance to xenotransplantation. Xenotransplantation 24(4). https://doi.org/10.1111/xen.12322

  123. UNOS United Network for Organ Sharing. http://www.unos.org. Last accessed on September 30, 2018

Download references

Acknowledgments

Disclosure: The author declares no conflicts of interest.

Funding: Work on xenotransplantation at the University of Alabama at Birmingham is supported in part by NIH grant #U19 AI090959/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. C. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cooper, D.K.C. (2020). Introduction: The Present Status of Xenotransplantation Research. In: Costa, C. (eds) Xenotransplantation. Methods in Molecular Biology, vol 2110. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0255-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0255-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0254-6

  • Online ISBN: 978-1-0716-0255-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics