Skip to main content

Transcription Inhibition by PNA-Induced R-Loops

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2105))

Abstract

R-loops are structures consisting of an RNA-DNA duplex and an unpaired DNA strand. They can form during transcription upon nascent RNA “threadback” invasion into the DNA duplex to displace the non-template DNA strand. R-loops occur naturally in all kingdoms of life, and they have multiple biological effects. Therefore, it is of interest to study the artificial induction of R-loops and to monitor their effects in model in vitro systems to learn mechanisms. Here we describe transcription blockage in vitro by R-loop formation induced by peptide nucleic acid (PNA) binding to the non-template DNA strand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124

    Article  CAS  Google Scholar 

  2. Wahba L, Koshland D (2013) The Rs of biology: R-loops and the regulation of regulators. Mol Cell 50:611–612

    Article  CAS  Google Scholar 

  3. Costantino L, Koshland D (2015) The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34:39–45

    Article  CAS  Google Scholar 

  4. Chedin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet 32:828

    Article  CAS  Google Scholar 

  5. Sollier J, Cimprich KA (2015) Breaking bad: R-loops and genome integrity. Trends Cell Biol 25:514–522

    Article  CAS  Google Scholar 

  6. Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 19:84

    Article  CAS  Google Scholar 

  7. Groh M, Gromak N (2014) Out of balance: R-loops in human disease. PLoS Genet 10:e1004630

    Article  Google Scholar 

  8. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28:1384–1396

    Article  CAS  Google Scholar 

  9. Freudenreich CH (2018) R-loops: targets for nuclease cleavage and repeat instability. Curr Genet 64:789

    Article  CAS  Google Scholar 

  10. Belotserkovskii BP, Tornaletti S, D’Souza AD, Hanawalt PC (2018) R-loop generation during transcription: formation, processing and cellular outcomes. DNA Repair (Amst) 71:69

    Article  CAS  Google Scholar 

  11. Tous C, Aguilera A (2007) Impairment of transcription elongation by R-loops in vitro. Biochem Biophys Res Commun 360:428–432

    Article  CAS  Google Scholar 

  12. Belotserkovskii BP, Soo Shin JH, Hanawalt PC (2017) Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter. Nucleic Acids Res 45:6589–6599

    Article  CAS  Google Scholar 

  13. Roy D, Yu K, Lieber MR (2008) Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol 28:50–60

    Article  CAS  Google Scholar 

  14. Daniels GA, Lieber MR (1995) RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res 23:5006–5011

    Article  CAS  Google Scholar 

  15. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4:442–451

    Article  CAS  Google Scholar 

  16. Belotserkovskii BP, Liu R, Tornaletti S, Krasilnikova MM, Mirkin SM, Hanawalt PC (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci U S A 107:12816–12821

    Article  CAS  Google Scholar 

  17. Belotserkovskii BP, Neil AJ, Saleh SS, Shin JH, Mirkin SM, Hanawalt PC (2013) Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Res 41:1817–1828

    Article  CAS  Google Scholar 

  18. Roy D, Zhang Z, Lu Z, Hsieh CL, Lieber MR (2010) Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol Cell Biol 30:146–159

    Article  CAS  Google Scholar 

  19. Masse E, Drolet M (1999) Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 274:16659–16664

    Article  CAS  Google Scholar 

  20. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  Google Scholar 

  21. Nielsen PE (2004) PNA technology. Mol Biotechnol 26:233–248

    Article  CAS  Google Scholar 

  22. Belotserkovskii BP, Hanawalt PC (2015) PNA binding to the non-template DNA strand interferes with transcription, suggesting a blockage mechanism mediated by R-loop formation. Mol Carcinog 54:1508–1512

    Article  CAS  Google Scholar 

  23. D’Souza AD, Belotserkovskii BP, Hanawalt PC (2018) A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system. Biochim Biophys Acta 1861:158–166

    Article  Google Scholar 

  24. Larsen HJ, Nielsen PE (1996) Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription. Nucleic Acids Res 24:458–463

    Article  CAS  Google Scholar 

  25. Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman CF, Bonham MA, Au KG et al (1992) Antisense and antigene properties of peptide nucleic acids. Science 258:1481–1485

    Article  CAS  Google Scholar 

  26. Belotserkovskii BP, Liu R, Hanawalt PC (2009) Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in friedreich’s ataxia triplet repeats. Mol Carcinog 48:299–308

    Article  CAS  Google Scholar 

  27. Egholm M, Christensen L, Dueholm KL, Buchardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222

    Article  CAS  Google Scholar 

  28. Ogawa H, Tomizawa J (1967) Breakage of polynucleotide strands by disintegration of radiophosphorus atoms in DNA molecules and their repair. I. Single-strand breakage by transmutation. J Mol Biol 30:1–6

    Article  CAS  Google Scholar 

  29. Salinas-Rios V, Belotserkovskii BP, Hanawalt PC (2011) DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 39:7444–7454

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Hanawalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Belotserkovskii, B.P., Ng, Sy., Hanawalt, P.C. (2020). Transcription Inhibition by PNA-Induced R-Loops. In: Nielsen, P. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 2105. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0243-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0243-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0242-3

  • Online ISBN: 978-1-0716-0243-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics