Skip to main content

Synthesis of Pyrrolidinyl PNA and Its Site-Specific Labeling at Internal Positions by Click Chemistry

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2105))

Abstract

Pyrrolidinyl PNA with an α-/β-dipeptide backbone consisting of alternating nucleobase-modified d-proline and (1S,2S)-2-aminocyclopentanecarboxylic acid (also known as acpcPNA) is a class of conformationally constrained PNA that shows exceptional DNA hybridization properties including very high specificity and the inability to form self-pairing hybrids. In this chapter, details of the syntheses of acpcPNA as well as its monomers and a protocol for site-specific labeling with a fluorescent dye via click chemistry are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar VA, Ganesh KN (2005) Conformationally constrained PNA analogues: structural evolution toward DNA/RNA binding selectivity. Acc Chem Res 38:404–412

    Article  CAS  Google Scholar 

  2. Pokorski JK, Witschi MA, Purnell BL, Appella DH (2004) (S,S)-trans-Cyclopentane-constrained peptide nucleic acids. A general backbone modification that improves binding affinity and sequence specificity. J Am Chem Soc 126:15067–15073

    Article  CAS  Google Scholar 

  3. Govindaraju T, Kumar VA, Ganesh KN (2005) (SR/RS)-Cyclohexanyl PNAs: conformationally preorganized PNA analogues with unprecedented preference for duplex formation with RNA. J Am Chem Soc 127:4144–4145

    Article  CAS  Google Scholar 

  4. Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH (2006) A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267

    Article  CAS  Google Scholar 

  5. Vilaivan T (2015) Pyrrolidinyl PNA with α/β-dipeptide backbone: from development to applications. Acc Chem Res 48:1645–1656

    Article  CAS  Google Scholar 

  6. Vilaivan T, Srisuwannaket C (2006) Hybridization of pyrrolidinyl peptide nucleic acids and DNA: selectivity, base-pairing specificity, and direction of binding. Org Lett 8:1897–1900

    Article  CAS  Google Scholar 

  7. Vilaivan C, Srisuwannaket C, Ananthanawat C, Suparpprom C, Kawakami J, Yamaguchi Y, Tanaka Y, Vilaivan T (2011) Pyrrolidinyl peptide nucleic acid with α/β-peptide backbone: a conformationally constrained PNA with unusual hybridization properties. Artificial DNA PNA XNA 2:50–59

    Article  Google Scholar 

  8. Lohse J, Dahl O, Nielsen PE (1999) Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc Natl Acad Sci U S A 96:11804–11808

    Article  CAS  Google Scholar 

  9. Bohländer PR, Vilaivan T, Wagenknecht H-A (2015) Strand displacement and duplex invasion into double-stranded DNA by pyrrolidinyl peptide nucleic acids. Org Biomol Chem 13:9223–9230

    Article  Google Scholar 

  10. Ditmangklo B, Boonlua C, Suparpprom C, Vilaivan T (2013) Reductive alkylation and sequential reductive alkylation-click chemistry for on-solid-support modification of pyrrolidinyl peptide nucleic acid. Bioconjug Chem 24:614–625

    Article  CAS  Google Scholar 

  11. Vilaivan T (2018) Fluoreogenic PNA probes. Beilstein J Org Chem 14:253–281

    Article  CAS  Google Scholar 

  12. Hövelmann F, Seitz O (2016) DNA stains as surrogate nucleobases in fluorogenic hybridization probes. Acc Chem Res 49:714–723

    Article  Google Scholar 

  13. Reenabthue N, Boonlua C, Vilaivan C, Vilaivan T, Suparpprom C (2011) 3-Aminopyrrolidine-4-carboxylic acid as versatile handle for internal labeling of pyrrolidinyl PNA. Bioorg Med Chem Lett 21:6465–6469

    Article  CAS  Google Scholar 

  14. Lowe G, Vilaivan T (1997) Amino acids bearing nucleobases for the synthesis of novel peptide nucleic acids. J Chem Soc Perkin Trans 1 1997:539–546

    Article  Google Scholar 

  15. Lowe G, Vilaivan T (1997) Dipeptides bearing nucleobases for the synthesis of novel peptide nucleic acids. J Chem Soc Perkin Trans 1 1997:547–554

    Article  Google Scholar 

  16. Cruickshank KA, Jiricny J, Reese CB (1984) The benzoylation of uracil and thymine. Tetrahedron 25:681–684

    Article  CAS  Google Scholar 

  17. LePlae PR, Umezawa N, Lee H-S, Gellman SH (2001) An efficient route to either enantiomer of trans-2-aminocyclopentanecarboxylic acid. J Org Chem 66:5629–5632

    Article  CAS  Google Scholar 

  18. Lee HS, LePlae PR, Porter EA, Gellman SH (2001) An efficient route to either enantiomer of orthogonally protected trans-3-aminopyrrolidine-4-carboxylic acid. J Org Chem 66:3597–3599

    Article  CAS  Google Scholar 

  19. Blake J, Willson CD, Rapoport H (1964) 3-Pyrrolidinones by intramolecular condensation. J Am Chem Soc 86:5293–5299

    Article  CAS  Google Scholar 

  20. Yotapan N, Charoenpakdee C, Wathanathavorn P, Ditmangklo B, Wagenknecht H-A, Vilaivan T (2014) Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label. Beilstein J Org Chem 10:2166–2174

    Article  Google Scholar 

  21. Ditmangklo B, Taechalertpaisarn J, Siriwong K, Vilaivan T (2019) Clickable styryl dyes for fluorescence labeling of pyrrolidinyl PNA probes for the detection of base mutations in DNA. Org Biomol Chem 17:9712–9725

    Article  CAS  Google Scholar 

  22. Bates RW, Dewey MR (2009) A formal synthesis of swainsonine by gold-catalyzed allene cyclization. Org Lett 11:3706–3708

    Article  CAS  Google Scholar 

  23. Robinson DS, Greenstein JP (1952) Sterioisomers of hydroxyproline. J Biol Chem 195:383–388

    CAS  PubMed  Google Scholar 

  24. Peterson ML, Vince R (1991) Synthesis and biological evaluation of 4-purinylpyrrolidine nucleosides. J Med Chem 34:787–2797

    Article  Google Scholar 

  25. Lee K-H, Ko K-Y (2006) Catalytic oxidation of benzophenone hydrazone with alumina-supported KMnO4 under oxygen atmosphere. Bull Kor Chem Soc 27:185–186

    Article  CAS  Google Scholar 

  26. Miller JB (1959) Preparation of crystalline diphenyldiazomethane. J Org Chem 24:560–561

    Article  CAS  Google Scholar 

  27. Obkircher M, Stähelin C, Dick F (2008) Formation of Fmoc-β-alanine during Fmoc-protections with Fmoc-OSu. J Pept Sci 14:763–766

    Article  CAS  Google Scholar 

  28. Egholm M, Nielsen PE, Buchardt O, Berg RH (1992) Recognition of guanine and adenine in DNA by cytosine and thymine containing peptide nucleic acids (PNA). J Am Chem Soc 114:9677–9678

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirayut Vilaivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ditmangklo, B., Muangkaew, P., Supabowornsathit, K., Vilaivan, T. (2020). Synthesis of Pyrrolidinyl PNA and Its Site-Specific Labeling at Internal Positions by Click Chemistry. In: Nielsen, P. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 2105. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0243-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0243-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0242-3

  • Online ISBN: 978-1-0716-0243-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics