Skip to main content

Overview of Tandem Mass Spectral and Metabolite Databases for Metabolite Identification in Metabolomics

  • Protocol
  • First Online:
Computational Methods and Data Analysis for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2104))

Abstract

Liquid chromatography–mass spectrometry (LC-MS) is one of the most popular technologies in metabolomics. The large-scale and unambiguous identification of metabolite structures remains a challenging task in LC-MS based metabolomics. Tandem mass spectral databases provide experimental and in silico MS/MS spectra to facilitate the identification of both known and unknown metabolites, which has become a gold standard method in metabolomics. In addition, metabolite knowledge databases offer valuable biological and pathway information of metabolites. In this chapter, we have briefly reviewed the most common and important tandem mass spectral and metabolite databases, and illustrated how they could be used for metabolite identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Anal Chem 78:23–35

    Article  CAS  Google Scholar 

  2. Domingo-Almenara X, Montenegro-Burke JR, Benton HP, Siuzdak G (2018) Annotation: a computational solution for streamlining metabolomics analysis. Anal Chem 90:480–489

    Article  CAS  Google Scholar 

  3. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G, Koellensperger G, Huan T, Uritboonthai W, Aisporna AE et al (2018) METLIN: a technology platform for identifying knowns and unknowns. Anal Chem 90:3156–3164

    Article  CAS  Google Scholar 

  4. Yang X, Neta P, Liang Y, Stein SE (2017) Extending a comprehensive reference tandem mass spectral library for more reliable metabolite identification. 65th Annual ASMS conference on mass spectrometry and allied topics, Indianapolis, Indiana, June 4–8, 2017

    Google Scholar 

  5. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    Article  CAS  Google Scholar 

  6. Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M et al (2018) Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev 37:513–532

    Article  CAS  Google Scholar 

  7. Blazenovic I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Meta 8:31

    Google Scholar 

  8. Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B (2013) Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9:e1003123

    Article  CAS  Google Scholar 

  9. Pirhaji L, Milani P, Leidl M, Curran T, Avila-Pacheco J, Clish CB, White FM, Saghatelian A, Fraenkel E (2016) Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods 13:770–776

    Article  CAS  Google Scholar 

  10. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  Google Scholar 

  11. Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Midford PE, Ong Q, Ong WK et al (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639

    Article  CAS  Google Scholar 

  12. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B (2017) The reactome pathway knowledgebase. Nucleic Acids Res 46:D649–D655

    Article  Google Scholar 

  13. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  Google Scholar 

  14. Burke MC, Mirokhin YA, Tchekhovskoi DV, Markey SP, Heidbrink Thompson J, Larkin C, Stein SE (2017) The hybrid search: a mass spectral library search method for discovery of modifications in proteomics. J Proteome Res 16:1924–1935

    Article  CAS  Google Scholar 

  15. Stravs MA, Schymanski EL, Singer HP, Hollender J (2013) Automatic recalibration and processing of tandem mass spectra using formula annotation. J Mass Spectrom 48:89–99

    Article  CAS  Google Scholar 

  16. Feunang YD, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Chem 8:61

    Article  Google Scholar 

  17. Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willighagen EL, Wilson M, Wishart DS et al (2016) SPLASH, a hashed identifier for mass spectra. Nat Biotechnol 34:1099–1101

    Article  CAS  Google Scholar 

  18. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    Article  CAS  Google Scholar 

  19. Allen `F, Greiner R, Wishart D (2014) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110

    Article  Google Scholar 

  20. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW (2006) LMSD: lipid maps structure database. Nucleic Acids Res 35:D527–D532

    Article  Google Scholar 

  21. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35:W606–W612

    Article  Google Scholar 

  22. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  Google Scholar 

  23. Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758

    Article  CAS  Google Scholar 

  24. Fiehn O, Barupal DK, Kind T (2011) Extending biochemical databases by metabolomic surveys. J Biol Chem 286:23637–23643

    Article  CAS  Google Scholar 

  25. Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, Liu N, Zhu Z-J (2019) Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun 10:1516

    Article  Google Scholar 

  26. Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD, Broadbelt LJ, Hanson AD, Fiehn O, Tyo KE, Henry CS (2015) MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Chem 7:44

    Article  Google Scholar 

  27. Huan T, Tang C, Li R, Shi Y, Lin G, Li L (2015) MyCompoundID MS/MS search: metabolite identification using a library of predicted fragment-ion-spectra of 383,830 possible human metabolites. Anal Chem 87:10619–10626

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by National Key R&D Program of China (2018YFA0800902), National Natural Science Foundation of China (Grants 21575151) and Chinese Academy of Sciences Major Facility-based Open Research Program. Z.-J. Z. is supported by Thousand Youth Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jiang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yi, Z., Zhu, ZJ. (2020). Overview of Tandem Mass Spectral and Metabolite Databases for Metabolite Identification in Metabolomics. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics