Abstract
Liquid chromatography–mass spectrometry (LC-MS) is one of the most popular technologies in metabolomics. The large-scale and unambiguous identification of metabolite structures remains a challenging task in LC-MS based metabolomics. Tandem mass spectral databases provide experimental and in silico MS/MS spectra to facilitate the identification of both known and unknown metabolites, which has become a gold standard method in metabolomics. In addition, metabolite knowledge databases offer valuable biological and pathway information of metabolites. In this chapter, we have briefly reviewed the most common and important tandem mass spectral and metabolite databases, and illustrated how they could be used for metabolite identification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Anal Chem 78:23–35
Domingo-Almenara X, Montenegro-Burke JR, Benton HP, Siuzdak G (2018) Annotation: a computational solution for streamlining metabolomics analysis. Anal Chem 90:480–489
Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G, Koellensperger G, Huan T, Uritboonthai W, Aisporna AE et al (2018) METLIN: a technology platform for identifying knowns and unknowns. Anal Chem 90:3156–3164
Yang X, Neta P, Liang Y, Stein SE (2017) Extending a comprehensive reference tandem mass spectral library for more reliable metabolite identification. 65th Annual ASMS conference on mass spectrometry and allied topics, Indianapolis, Indiana, June 4–8, 2017
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714
Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M et al (2018) Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev 37:513–532
Blazenovic I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Meta 8:31
Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B (2013) Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9:e1003123
Pirhaji L, Milani P, Leidl M, Curran T, Avila-Pacheco J, Clish CB, White FM, Saghatelian A, Fraenkel E (2016) Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods 13:770–776
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361
Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Midford PE, Ong Q, Ong WK et al (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639
Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B (2017) The reactome pathway knowledgebase. Nucleic Acids Res 46:D649–D655
Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751
Burke MC, Mirokhin YA, Tchekhovskoi DV, Markey SP, Heidbrink Thompson J, Larkin C, Stein SE (2017) The hybrid search: a mass spectral library search method for discovery of modifications in proteomics. J Proteome Res 16:1924–1935
Stravs MA, Schymanski EL, Singer HP, Hollender J (2013) Automatic recalibration and processing of tandem mass spectra using formula annotation. J Mass Spectrom 48:89–99
Feunang YD, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Chem 8:61
Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willighagen EL, Wilson M, Wishart DS et al (2016) SPLASH, a hashed identifier for mass spectra. Nat Biotechnol 34:1099–1101
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617
Allen `F, Greiner R, Wishart D (2014) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110
Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW (2006) LMSD: lipid maps structure database. Nucleic Acids Res 35:D527–D532
Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35:W606–W612
Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14
Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758
Fiehn O, Barupal DK, Kind T (2011) Extending biochemical databases by metabolomic surveys. J Biol Chem 286:23637–23643
Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, Liu N, Zhu Z-J (2019) Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun 10:1516
Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD, Broadbelt LJ, Hanson AD, Fiehn O, Tyo KE, Henry CS (2015) MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Chem 7:44
Huan T, Tang C, Li R, Shi Y, Lin G, Li L (2015) MyCompoundID MS/MS search: metabolite identification using a library of predicted fragment-ion-spectra of 383,830 possible human metabolites. Anal Chem 87:10619–10626
Acknowledgments
The work has been supported by National Key R&D Program of China (2018YFA0800902), National Natural Science Foundation of China (Grants 21575151) and Chinese Academy of Sciences Major Facility-based Open Research Program. Z.-J. Z. is supported by Thousand Youth Talents Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Yi, Z., Zhu, ZJ. (2020). Overview of Tandem Mass Spectral and Metabolite Databases for Metabolite Identification in Metabolomics. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_8
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0239-3_8
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0238-6
Online ISBN: 978-1-0716-0239-3
eBook Packages: Springer Protocols