Skip to main content

Analyzing Metabolomics Data for Environmental Health and Exposome Research

  • Protocol
  • First Online:
Computational Methods and Data Analysis for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2104))

Abstract

The exposome is the cumulative measure of environmental influences and associated biological responses across the life span, with critical relevance for understanding how exposures can impact human health. Metabolomics analysis of biological samples offers unique advantages for examining the exposome. Simultaneous analysis of external exposures, biological responses, and host susceptibility at a systems level can help establish links between external exposures and health outcomes. As metabolomics technologies continue to evolve for the study of the exposome, metabolomics ultimately will help provide valuable insights for exposure risk assessment, and disease prevention and management. Here, we discuss recent advances in metabolomics, and describe data processing protocols that can enable analysis of the exposome. This chapter focuses on using liquid chromatography–mass spectrometry (LC-MS)-based untargeted metabolomics for analysis of the exposome, including (1) preprocessing of untargeted metabolomics data, (2) identification of exposure chemicals and their metabolites, and (3) methods to establish associations between exposures and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32(4):650–654

    Article  CAS  PubMed  Google Scholar 

  2. Collins FS, Lander ES, Rogers J, Waterston RH, Conso IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945

    Article  CAS  Google Scholar 

  3. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, McMahon A, Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O, Whetzel PL, Amode R, Guillen JA, Riat HS, Trevanion SJ, Hall P, Junkins H, Flicek P, Burdett T, Hindorff LA, Cunningham F, Parkinson H (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47(D1):D1005–D1012

    Article  CAS  PubMed  Google Scholar 

  4. Eyre S, Worthington J (2014) Take your PICS: moving from GWAS to immune function. Immunity 41(6):883–885

    Article  CAS  PubMed  Google Scholar 

  5. Cuzick J, Brentnall A, Dowsett M (2017) SNPs for breast cancer risk assessment. Oncotarget 8(59):99211–99212

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yao L, Tak YG, Berman BP, Farnham PJ (2014) Functional annotation of colon cancer risk SNPs. Nat Commun 5:5114

    Article  CAS  PubMed  Google Scholar 

  7. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, Shianna KV, Yoon W, Kasperaviciute D, Gennarelli M, Strittmatter WJ, Bonvicini C, Rossi G, Jayathilake K, Cola PA, McEvoy JP, Keefe RS, Fisher EM, St Jean PL, Giegling I, Hartmann AM, Moller HJ, Ruppert A, Fraser G, Crombie C, Middleton LT, St Clair D, Roses AD, Muglia P, Francks C, Rujescu D, Meltzer HY, Goldstein DB (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5(2):e1000373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Reddy MVPL, Wang H, Liu S, Bode B, Reed JC, Steed RD, Anderson SW, Steed L, Hopkins D, She JX (2011) Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population. Genes Immun 12(3):208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Willer CJ, Bonnycastle LL, Conneely KN, Duren WL, Jackson AU, Scott LJ, Narisu N, Chines PS, Skol A, Stringham HM, Petrie J, Erdos MR, Swift AJ, Enloe ST, Sprau AG, Smith E, Tong M, Doheny KF, Pugh EW, Watanabe RM, Buchanan TA, Valle TT, Bergman RN, Tuomilehto J, Mohlke KL, Collins FS, Boehnke M (2007) Screening of 134 single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes replicates association with 12 SNPs in nine genes. Diabetes 56(1):256–264

    Article  CAS  PubMed  Google Scholar 

  10. Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, Posthuma D (2015) Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet 47(7):702

    Article  CAS  PubMed  Google Scholar 

  11. Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, Basagana X, Brochot C, Bucchini L, Bustamante M, Carracedo A, Casas M, Estivill X, Fairley L, van Gent D, Gonzalez JR, Granum B, Grazuleviciene R, Gutzkow KB, Julvez J, Keun HC, Kogevinas M, McEachan RRC, Meltzer HM, Sabido E, Schwarze PE, Siroux V, Sunyer J, Want EJ, Zeman F, Nieuwenhuijsen MJ (2014) The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect 122(6):535–544

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kawamoto T, Nitta H, Murata K, Toda E, Tsukamoto N, Hasegawa M, Yamagata Z, Kayama F, Kishi R, Ohya Y, Saito H, Sago H, Okuyama M, Ogata T, Yokoya S, Koresawa Y, Shibata Y, Nakayama S, Michikawa T, Takeuchi A, Satoh H, Ch WGER (2014) Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 14:25

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z, Kleinjans J, Kogevinas M, Kyrtopoulos S, Nieuwenhuijsen M, Phillips DH, Probst-Hensch N, Scalbert A, Vermeulen R, Wild CP, Consortium E (2017) The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health 220(2):142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A (2014) The blood exposome and its role in discovering causes of disease. Environ Health Perspect 122(8):769–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41(1):24–32

    Article  PubMed  Google Scholar 

  16. Miller GW, Jones DP (2014) The nature of nurture: refining the definition of the exposome. Toxicol Sci 137(1):1

    Article  CAS  PubMed  Google Scholar 

  17. Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14(8):1847–1850

    Article  CAS  Google Scholar 

  18. Louis GMB, Sundaram R (2012) Exposome: time for transformative research. Stat Med 31(22):2569–2575

    Article  Google Scholar 

  19. Rattray NJW, Deziel NC, Wallach JD, Khan SA, Vasiliou V, Ioannidis JPA, Johnson CH (2018) Beyond genomics: understanding exposotypes through metabolomics. Hum Genomics 12(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Steinberg CEW, Sturzenbaum SR, Menzel R (2008) Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 400(1–3):142–161

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson JK, Lindon JC, Holmes E (1999) Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  CAS  PubMed  Google Scholar 

  22. Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ellis JK, Athersuch TJ, Thomas LDK, Teichert F, Perez-Trujillo M, Svendsen C, Spurgeon DJ, Singh R, Jarup L, Bundy JG, Keun HC (2012) Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med 10:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maitre L, Villanueva CM, Lewis MR, Ibarluzea J, Santa-Marina L, Vrijheid M, Sunyer J, Coen M, Toledano MB (2016) Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study. BMC Med 14:177

    Article  PubMed  PubMed Central  Google Scholar 

  25. Baker MG, Simpson CD, Lin YS, Shireman LM, Seixas N (2017) The use of metabolomics to identify biological signatures of manganese exposure. Ann Work Expo Health 61(4):406–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson CH, Athersuch TJ, Collman GW, Dhungana S, Grant DF, Jones DP, Patel CJ, Vasiliou V (2017) Yale school of public health symposium on lifetime exposures and human health: the exposome; summary and future reflections. Hum Genomics 11:32

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O’Brien PJ, Johnson CH, Marletta MA, Patti GJ, Siuzdak G (2013) Toward Omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem 85(14):6876–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buck Louis GM, Smarr MM, Patel CJ (2017) The Exposome research paradigm: an opportunity to understand the environmental basis for human health and disease. Curr Environ Health Rep 4(1):89–98

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stingone JA, Louis GMB, Nakayama SF, Vermeulen RCH, Kwok RK, Cui YX, Balshaw DM, Teitelbaum SL (2017) Toward greater implementation of the Exposome research paradigm within environmental epidemiology. Annu Rev Public Health 38(38):315–327

    Article  PubMed  PubMed Central  Google Scholar 

  30. Robinson O, Basagana X, Agier L, de Castro M, Hernandez-Ferrer C, Gonzalez JR, Grimalt JO, Nieuwenhuijsen M, Sunyer J, Slama R, Vrijheid M (2015) The pregnancy Exposome: multiple environmental exposures in the INMA-Sabadell birth cohort. Environ Sci Technol 49(17):10632–10641

    Article  CAS  PubMed  Google Scholar 

  31. Chung MK, Kannan K, Louis GM, Patel CJ (2018) Toward capturing the Exposome: exposure biomarker variability and Coexposure patterns in the shared environment. Environ Sci Technol 52(15):8801–8810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rappaport SM (2016) Genetic factors are not the major causes of chronic diseases. PLoS One 11(4):e0154387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Go YM, Walker DI, Liang YL, Uppal K, Soltow QA, Tran V, Strobel F, Quyyumi AA, Ziegler TR, Pennell KD, Miller GW, Jones DP (2015) Reference standardization for mass spectrometry and high-resolution metabolomics applications to Exposome research. Toxicol Sci 148(2):531–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dennis KK, Marder E, Balshaw DM, Cui YX, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB (2017) Biomonitoring in the era of the Exposome. Environ Health Perspect 125(4):502–510

    Article  CAS  PubMed  Google Scholar 

  35. Lei ZT, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ulbrich B, Stahlmann R (2004) Developmental toxicity of polychlorinated biphenyls (PCBs): a systematic review of experimental data. Arch Toxicol 78(5):252–268

    Article  CAS  PubMed  Google Scholar 

  37. Balcioglu EB (2016) Potential effects of polycyclic aromatic hydrocarbons (PAHs) in marine foods on human health: a critical review. Toxin Rev 35(3–4):98–105

    Article  CAS  Google Scholar 

  38. Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE (2009) Human internal and external exposure to PBDEs—a review of levels and sources. Int J Hyg Environ Health 212(2):109–134

    Article  CAS  PubMed  Google Scholar 

  39. Herbstman JB, Sjodin A, Kurzon M, Lederman SA, Jones RS, Rauh V, Needham LL, Tang D, Niedzwiecki M, Wang RY, Perera F (2010) Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect 118(5):712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pleil JD, Stiegel MA, Sobus JR, Tabucchi S, Ghio AJ, Madden MC (2010) Cumulative exposure assessment for trace-level polycyclic aromatic hydrocarbons (PAHs) using human blood and plasma analysis. J Chromatogr B Analyt Technol Biomed Life Sci 878(21):1753–1760

    Article  CAS  PubMed  Google Scholar 

  41. Marek RF, Thorne PS, Wang K, DeWall J, Hornbuckle KC (2013) PCBs and OH-PCBs in serum from children and mothers in urban and rural US communities. Environ Sci Technol 47:3353–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Awad AM, Martinez A, Marek RF, Hornbuckle KC (2016) Occurrence and distribution of two hydroxylated polychlorinated biphenyl congeners in Chicago air. Environ Sci Technol Lett 3(2):47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng XY, Dupuis KT, Aly NA, Zhou YX, Smith FB, Tang KQ, Smith RD, Baker ES (2018) Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 1037:265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marquez-Sillero I, Aguilera-Herrador E, Cardenas S, Valcarcel M (2011) Ion-mobility spectrometry for environmental analysis. TrAC Trends Anal Chem 30(5):677–690

    Article  CAS  Google Scholar 

  45. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787

    Article  CAS  PubMed  Google Scholar 

  46. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636

    Article  CAS  PubMed  Google Scholar 

  47. Lommen A (2009) MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data Preprocessing. Anal Chem 81(8):3079–3086

    Article  CAS  PubMed  Google Scholar 

  48. Misra BB, Mohapatra S (2019) Tools and resources for metabolomics research community: a 2017–2018 update. Electrophoresis 40(2):227–246

    Article  CAS  PubMed  Google Scholar 

  49. Chadeau-Hyam M, Athersuch TJ, Keun HC, De Iorio M, Ebbels TMD, Jenab M, Sacerdote C, Bruce SJ, Holmes E, Vineis P (2011) Meeting-in-the-middle using metabolic profiling - a strategy for the identification of intermediate biomarkers in cohort studies. Biomarkers 16(1):83–88

    Article  CAS  PubMed  Google Scholar 

  50. MacPherson S, Arbuckle TE, Fisher M (2018) Adjusting urinary chemical biomarkers for hydration status during pregnancy. J Expo Sci Environ Epidemiol 28(5):481–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics. Anal Chem 78(13):4281–4290

    Article  CAS  PubMed  Google Scholar 

  52. Gagnebin Y, Tonoli D, Lescuyer P, Ponte B, de Seigneux S, Martin PY, Schappler J, Boccard J, Rudaz S (2017) Metabolomic analysis of urine samples by UHPLC-QTOF-MS: impact of normalization strategies. Anal Chim Acta 955:27–35

    Article  CAS  PubMed  Google Scholar 

  53. Johnson CH, Ivanisevic J, Benton HP, Siuzdak G (2015) Bioinformatics: the next frontier of metabolomics. Anal Chem 87(1):147–156

    Article  CAS  PubMed  Google Scholar 

  54. Uppal K, Walker DI, Jones DP (2017) xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal Chem 89(2):1063–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Warth B, Spangler S, Fang M, Johnson CH, Forsberg EM, Granados A, Martin RL, Domingo-Almenara X, Huan T, Rinehart D, Montenegro-Burke JR, Hilmers B, Aisporna A, Hoang LT, Uritboonthai W, Benton HP, Richardson SD, Williams AJ, Siuzdak G (2017) Exposome-scale investigations guided by global metabolomics, pathway analysis, and cognitive computing. Anal Chem 89(21):11505–11513

    Article  CAS  PubMed  Google Scholar 

  56. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted Metabolomic data. Anal Chem 84(11):5035–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y, Knox C, Wilson M, Liang YJ, Grant J, Liu YF, Goldansaz SA, Rappaport SM (2015) T3DB: the toxic exposome database. Nucleic Acids Res 43(D1):D928–D934

    Article  CAS  PubMed  Google Scholar 

  58. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu YF, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

    Article  CAS  PubMed  Google Scholar 

  59. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ (2019) The comparative toxicogenomics database: update 2019. Nucleic Acids Res 47(D1):D948–D954

    Article  CAS  PubMed  Google Scholar 

  60. Jordan S, Fonger G, Hazard G (2017) Hazardous substances data bank: recent features and enhancements. Abstr Am Chem Soc 254

    Google Scholar 

  61. Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, Wishart DS, Scalbert A (2017) Exposome-explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res 45(D1):D979–D984

    Article  CAS  PubMed  Google Scholar 

  62. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN—a metabolite mass spectral database. Ther Drug Monit 27(6):747–751

    Article  CAS  PubMed  Google Scholar 

  63. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia JG, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong YP, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    Article  CAS  PubMed  Google Scholar 

  64. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714

    Article  CAS  PubMed  Google Scholar 

  65. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35:W606–W612

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huan T, Tang CQ, Li RH, Shi Y, Lin GH, Li L (2015) MyCompoundID MS/MS search: metabolite identification using a library of predicted fragment-ion-spectra of 383,830 possible human metabolites. Anal Chem 87(20):10619–10626

    Article  CAS  PubMed  Google Scholar 

  67. Wang MX, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Criisemann M, Boudreau PD, Esquenazi E, Sandoval-Calderon M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya CA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai JQ, Neupane R, Gurr J, Rodriguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrovr T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Muller R, Waters KM, Shi WY, Liu XT, Zhang LX, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutierrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34(8):828–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li SZ, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B (2013) Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9(7):e1003123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pirhaji L, Milani P, Leidl M, Curran T, Avila-Pacheco J, Clish CB, White FM, Saghatelian A, Fraenkel E (2016) Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods 13(9):770–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Langston MA, Levine RS, Kilbourne BJ, Rogers GL, Kershenbaum AD, Baktash SH, Coughlin SS, Saxton AM, Agboto VK, Hood DB, Litchveld MY, Oyana TJ, Matthews-Juarez P, Juarez PD (2014) Scalable combinatorial tools for health disparities research. Int J Environ Res Public Health 11(10):10419–10443

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vacquier B, Rage E, Leuraud K, Caer-Lorho S, Houot J, Acker A, Laurier D (2011) The influence of multiple types of occupational exposure to radon, gamma rays and long-lived radionuclides on mortality risk in the French “post-55” sub-cohort of uranium miners: 1956–1999. Radiat Res 176(6):796–806

    Article  CAS  PubMed  Google Scholar 

  72. Patel CJ, Ioannidis JP (2014) Studying the elusive environment in large scale. JAMA 311(21):2173–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Patel CJ, Bhattacharya J, Butte AJ (2010) An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One 5(5):e10746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Patel CJ, Cullen MR, Ioannidis JP, Butte AJ (2012) Systematic evaluation of environmental factors: persistent pollutants and nutrients correlated with serum lipid levels. Int J Epidemiol 41(3):828–843

    Article  PubMed  PubMed Central  Google Scholar 

  75. Manrai AK, Cui YX, Bushel PR, Hall M, Karakitsios S, Mattingly CJ, Ritchie M, Schmitt C, Sarigiannis DA, Thomas DC, Wishart D, Balshaw DM, Patel CJ (2017) Informatics and data analytics to support exposome-based discovery for public health. Annu Rev Public Health 38(38):279–294

    Article  PubMed  Google Scholar 

  76. Sun ZC, Tao YB, Li S, Ferguson KK, Meeker JD, Park SK, Batterman SA, Mukherjee B (2013) Statistical strategies for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons. Environ Health 12:85

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat Methodol 58(1):267–288

    Google Scholar 

  78. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net (vol B 67, pg 301, 2005). J R Stat Soc Series B Stat Methodol 67:768–768

    Article  Google Scholar 

  79. Agier L, Portengen L, Chadeau-Hyam M, Basagana X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, Gonzalez JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R (2016) A systematic comparison of linear regression-based statistical methods to assess Exposome-health associations. Environ Health Perspect 124(12):1848–1856

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bottolo L, Richardson S (2010) Evolutionary stochastic search for Bayesian model exploration. Bayesian Anal 5(3):583–618

    Article  Google Scholar 

  81. Liquet B, Bottolo L, Campanella G, Richardson S, Chadeau-Hyam M (2016) R2GUESS: a graphics processing unit-based R package for Bayesian variable selection regression of multivariate responses. J Stat Softw 69(2):1–32

    Google Scholar 

  82. Jiang C, Wang X, Li XY, Inlora J, Wang T, Liu Q, Snyder M (2018) Dynamic human environmental Exposome revealed by longitudinal personal monitoring. Cell 175(1):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang XH, Eijkemans MJC, Wallinga J, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D (2012) Multivariate approach for studying interactions between environmental variables and microbial communities. PLoS One 7(11):e50267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jain P, Vineis P, Liquet B, Vlaanderen J, Bodinier B, van Veldhoven K, Kogevinas M, Athersuch TJ, Font-Ribera L, Villanueva CM, Vermeulen R, Chadeau-Hyam M (2018) A multivariate approach to investigate the combined biological effects of multiple exposures. J Epidemiol Community Health 72(7):564–571

    Article  PubMed  Google Scholar 

  85. Roede JR, Uppal K, Park Y, Tran V, Jones DP (2014) Transcriptome-metabolome wide association study (TMWAS) of maneb and paraquat neurotoxicity reveals network level interactions in toxicologic mechanism. Toxicol Rep 1:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guida F, Sandanger TM, Castagne R, Campanella G, Polidoro S, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, Severi G, Kyrtopoulos SA, Georgiadis P, Vermeulen RCH, Lund E, Vineis P, Chadeau-Hyam M (2015) Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum Mol Genet 24(8):2349–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mahieu NG, Patti GJ (2017) Systems-level annotation of a 25 000 features to fewer than G metabolomics data set reduces 1000 unique metabolites. Anal Chem 89(19):10397–10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Geng DW, Jogsten IE, Dunstan J, Hagberg J, Wang T, Ruzzin J, Rabasa-Lhoret R, van Bavel B (2016) Gas chromatography/atmospheric pressure chemical ionization/mass spectrometry for the analysis of organochlorine pesticides and polychlorinated biphenyls in human serum. J Chromatogr A 1453:88–98

    Article  CAS  PubMed  Google Scholar 

  89. Zhao S, Luo X, Li L (2016) Chemical isotope Labeling LC-MS for high coverage and quantitative profiling of the hydroxyl submetabolome in metabolomics. Anal Chem 88(21):10617–10623

    Article  CAS  PubMed  Google Scholar 

  90. Treutler H, Tsugawa H, Porzel A, Gorzolka K, Tissier A, Neumann S, Balcke GU (2016) Discovering regulated metabolite families in untargeted metabolomics studies. Anal Chem 88(16):8082–8090

    Article  CAS  PubMed  Google Scholar 

  91. Depke T, Franke R, Bronstrup M (2017) Clustering of MS2 spectra using unsupervised methods to aid the identification of secondary metabolites from Pseudomonas aeruginosa. J Chromatogr B: Anal Technol Biomed Life Sci 1071:19–28

    Article  CAS  Google Scholar 

  92. van der Hooft JJJ, Wandy J, Barrett MP, Burgess KEV, Rogers S (2016) Topic modeling for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci U S A 113(48):13738–13743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. van der Hooft JJJ, Wandy J, Young F, Padmanabhan S, Gerasimidis K, Burgess KEV, Barrett MP, Rogers S (2017) Unsupervised discovery and comparison of structural families across multiple samples in untargeted metabolomics. Anal Chem 89(14):7569–7577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lu YF, Goldstein DB, Angrist M, Cavalleri G (2014) Personalized medicine and human genetic diversity. Cold Spring Harb Perspect Med 4(9):a008581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Juarez PD, Matthews-Juarez P, Hood DB, Im W, Levine RS, Kilbourne BJ, Langston MA, Al-Hamdan MZ, Crosson WL, Estes MG, Estes SM, Agboto VK, Robinson P, Wilson S, Lichtveld MY (2014) The public health exposome: a population-based, exposure science approach to health disparities research. Int J Environ Res Public Health 11(12):12866–12895

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Helen Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cai, Y., Rosen Vollmar, A.K., Johnson, C.H. (2020). Analyzing Metabolomics Data for Environmental Health and Exposome Research. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics