Skip to main content

Using the IDEOM Workflow for LCMS-Based Metabolomics Studies of Drug Mechanisms

  • 3544 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2104)

Abstract

Rapid advancements in metabolomics technologies have allowed for application of liquid chromatography mass spectrometry (LCMS)-based metabolomics to investigate a wide range of biological questions. In addition to an important role in studies of cellular biochemistry and biomarker discovery, an exciting application of metabolomics is the elucidation of mechanisms of drug action (Creek et al., Antimicrob Agents Chemother 60:6650–6663, 2016; Allman et al., Antimicrob Agents Chemother 60:6635–6649, 2016). Although it is a very useful technique, challenges in raw data processing, extracting useful information out of large noisy datasets, and identifying metabolites with confidence, have meant that metabolomics is still perceived as a highly specialized technology. As a result, metabolomics has not yet achieved the anticipated extent of uptake in laboratories around the world as genomics or transcriptomics. With a view to bring metabolomics within reach of a nonspecialist scientist, here we describe a routine workflow with IDEOM, which is a graphical user interface within Microsoft Excel, which almost all researchers are familiar with. IDEOM consists of custom built algorithms that allow LCMS data processing, automatic noise filtering and identification of metabolite features (Creek et al., Bioinformatics 28:1048–1049, 2012). Its automated interface incorporates advanced LCMS data processing tools, mzMatch and XCMS, and requires R for complete functionality. IDEOM is freely available for all researchers and this chapter will focus on describing the IDEOM workflow for the nonspecialist researcher in the context of studies designed to elucidate mechanisms of drug action.

Key words

  • Metabolomics
  • IDEOM
  • Drug mechanism
  • Mode of action
  • Microsoft Excel
  • LCMS
  • Data processing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0239-3_21
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0239-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  2. Scheltema RA, Jankevics A, Jansen RC, Swertz MA, Breitling R (2011) PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem 83:2786–2793

    CAS  CrossRef  Google Scholar 

  3. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    CAS  CrossRef  Google Scholar 

  4. Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16:531–543

    CAS  CrossRef  Google Scholar 

  5. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DV, Kumar V, Hasan S et al (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310

    CAS  CrossRef  Google Scholar 

  6. Hovlid ML, Winzeler EA (2016) Phenotypic screens in antimalarial drug discovery. Trends Parasitol 32:697–707

    CAS  CrossRef  Google Scholar 

  7. Creek DJ, Chua HH, Cobbold SA, Nijagal B, Macrae JI, Dickerman BK, Gilson PR, Ralph SA, McConville MJ (2016) Metabolomics-based screening of the malaria box reveals both novel and established mechanisms of action. Antimicrob Agents Chemother 60(11):6650–6663

    CAS  CrossRef  Google Scholar 

  8. Allman EL, Painter HJ, Samra J, Carrasquilla M, Llinas M (2016) Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrob Agents Chemother 60:6635–6649

    CAS  CrossRef  Google Scholar 

  9. Kwon YK, Lu W, Melamud E, Khanam N, Bognar A, Rabinowitz JD (2008) A domino effect in antifolate drug action in Escherichia coli. Nat Chem Biol 4:602–608

    CAS  CrossRef  Google Scholar 

  10. Vincent IM, Creek DJ, Burgess K, Woods DJ, Burchmore RJ, Barrett MP (2012) Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis 6:e1618

    CrossRef  Google Scholar 

  11. Zampieri M, Szappanos B, Buchieri MV, Trauner A, Piazza I, Picotti P, Gagneux S, Borrell S, Gicquel B, Lelievre J et al (2018) High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci Transl Med 10:eaal3973

    CrossRef  Google Scholar 

  12. Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TN, Willis P (2013) The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One 8:e62906

    CAS  CrossRef  Google Scholar 

  13. Trager W, Jensen J (1976) Human malaria parasites in continuous culture. Science 193:673–675

    CAS  CrossRef  Google Scholar 

  14. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    CAS  CrossRef  Google Scholar 

  15. Tautenhahn R, Bottcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9:504

    CrossRef  Google Scholar 

  16. Creek DJ, Jankevics A, Burgess KE, Breitling R, Barrett MP (2012) IDEOM: an excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 28:1048–1049

    CAS  CrossRef  Google Scholar 

  17. Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N et al (2007) The metabolomics standards initiative. Nat Biotechnol 25:846–848

    CAS  PubMed  Google Scholar 

  18. De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M, Speed TP (2012) Normalizing and integrating metabolomics data. Anal Chem 84:10768–10776

    CrossRef  Google Scholar 

  19. Biagini GA, Fisher N, Shone AE, Mubaraki MA, Srivastava A, Hill A, Antoine T, Warman AJ, Davies J, Pidathala C et al (2012) Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc Natl Acad Sci U S A 109:8298–8303

    CAS  CrossRef  Google Scholar 

  20. Ganesan SM, Morrisey JM, Ke H, Painter HJ, Laroiya K, Phillips MA, Rathod PK, Mather MW, Vaidya AB (2011) Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. Mol Biochem Parasitol 177:29–34

    CAS  CrossRef  Google Scholar 

  21. Cobbold SA, Chua HH, Nijagal B, Creek DJ, Ralph SA, McConville MJ (2016) Metabolic dysregulation induced in Plasmodium falciparum by dihydroartemisinin and other front-line antimalarial drugs. J Infect Dis 213:276–286

    CAS  CrossRef  Google Scholar 

  22. Creek DJ, Jankevics A, Breitling R, Watson DG, Barrett MP, Burgess KE (2011) Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem 83:8703–8710

    CAS  CrossRef  Google Scholar 

  23. Kind T, Fiehn O (2007) Seven Golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren J. Creek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Srivastava, A., Creek, D.J. (2020). Using the IDEOM Workflow for LCMS-Based Metabolomics Studies of Drug Mechanisms. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols