Skip to main content

Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data

  • Protocol
  • First Online:
Computational Methods and Data Analysis for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2104))

Abstract

MetaboAnalyst (www.metaboanalyst.ca) is an easy-to-use, comprehensive web-based tool, freely available for metabolomics data processing, statistical analysis, functional interpretation, as well as integration with other omics data. This chapter first provides an introductory overview to the current MetaboAnalyst (version 4.0) with regards to its underlying design concepts and user interface structure. Subsequent sections describe three common metabolomics data analysis workflows covering targeted metabolomics, untargeted metabolomics, and multi-omics data integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494. https://doi.org/10.1093/nar/gky310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chong J, Xia J (2018) MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34:4313–4314. https://doi.org/10.1093/bioinformatics/bty528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chong J, Yamamoto M, Xia J (2019) MetaboAnalystR 2.0: from raw spectra to biological insights. Meta 9:57

    CAS  Google Scholar 

  7. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJC (2006) Scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142. https://doi.org/10.1186/1471-2164-7-142.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Temmerman L, Livera A, Bowne JB, Sheedy JR, Callahan DL, Nahid A, Souza D, Schoofs L, Tull DL, McConville M (2012) Cross-platform urine metabolomics of experimental hyperglycemia in type 2 diabetes. Diabetes Metab S 6:002

    Google Scholar 

  9. De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M, Speed TP (2012) Normalizing and integrating metabolomics data. Anal Chem 84:10768–10776. https://doi.org/10.1021/ac302748b

    Article  CAS  PubMed  Google Scholar 

  10. Eisner R, Stretch C, Eastman T, Xia J, Hau D, Damaraju S, Greiner R, Wishart DS, Baracos VE (2011) Learning to predict cancer-associated skeletal muscle wasting from 1 H-NMR profiles of urinary metabolites. Metabolomics 7:25–34

    Article  CAS  Google Scholar 

  11. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290

    Article  CAS  PubMed  Google Scholar 

  12. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. https://doi.org/10.1093/nar/gkr988

    Article  CAS  PubMed  Google Scholar 

  13. Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25:262–284. https://doi.org/10.1016/j.cmet.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D et al (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res 42:D478–D484. https://doi.org/10.1093/nar/gkt1067

    Article  CAS  PubMed  Google Scholar 

  15. Flint TR, Janowitz T, Connell CM, Roberts EW, Denton AE, Coll AP, Jodrell DI, Fearon DT (2016) Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab 24:672–684. https://doi.org/10.1016/j.cmet.2016.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ham DJ et al (2014) Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Clin Nutr 33(3):448–458

    Article  CAS  PubMed  Google Scholar 

  17. Cui P et al (2019) Metabolic derangements of skeletal muscle from a murine model of glioma cachexia. Skelet Muscle 9(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gowda GN, Djukovic D (2014) Overview of mass spectrometry-based metabolomics: opportunities and challenges. In: Mass spectrometry in metabolomics. Springer, New York, pp 3–12

    Google Scholar 

  19. Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. Trac Trend Anal Chem 27:251–260. https://doi.org/10.1016/j.trac.2008.01.008

    Article  CAS  Google Scholar 

  20. Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B (2013) Predicting network activity from high throughput metabolomics. PLoS Comput Biol 9:e1003123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Integrative HMPRNC (2014) The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–289. https://doi.org/10.1016/j.chom.2014.08.014

    Article  CAS  Google Scholar 

  23. Li S, Pozhitkov A, Ryan RA, Manning CS, Brown-Peterson N, Brouwer M (2010) Constructing a fish metabolic network model. Genome Biol 11:R115. https://doi.org/10.1186/gb-2010-11-11-r115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tiratterra E, Franco P, Porru E, Katsanos KH, Christodoulou DK, Roda G (2018) Role of bile acids in inflammatory bowel disease. Ann Gastroenterol 31:266–272. https://doi.org/10.20524/aog.2018.0239

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ogilvie LA, Jones BV (2012) Dysbiosis modulates capacity for bile acid modification in the gut microbiomes of patients with inflammatory bowel disease: a mechanism and marker of disease? Gut 61:1642–1643. https://doi.org/10.1136/gutjnl-2012-302137.

    Article  CAS  PubMed  Google Scholar 

  26. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, Thomas G, Barbu V, Humbert L, Despras G et al (2013) Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62:531–539. https://doi.org/10.1136/gutjnl-2012-302578

    Article  CAS  PubMed  Google Scholar 

  27. Murakami Y, Kubo S, Tamori A, Itami S, Kawamura E, Iwaisako K, Ikeda K, Kawada N, Ochiya T, Taguchi Y (2015) Comprehensive analysis of transcriptome and metabolome analysis in intrahepatic Cholangiocarcinoma and hepatocellular carcinoma. Sci Rep 5:16294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabolomics 1:92–107. https://doi.org/10.2174/2213235X11301010092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O (2012) A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Meta 2:775–795. https://doi.org/10.3390/metabo2040775

    Article  CAS  Google Scholar 

  30. Rubingh CM, Bijlsma S, Derks EP, Bobeldijk I, Verheij ER, Kochhar S, Smilde AK (2006) Assessing the performance of statistical validation tools for megavariate metabolomics data. Metabolomics 2:53–61. https://doi.org/10.1007/s11306-006-0022-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bartel J, Krumsiek J, Theis FJ (2013) Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J 4:e201301009. https://doi.org/10.5936/csbj.201301009

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marco-Ramell A, Palau-Rodriguez M, Alay A, Tulipani S, Urpi-Sarda M, Sanchez-Pla A, Andres-Lacueva C (2018) Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinformatics 19(1). https://doi.org/10.1186/s12859-017-2006-0

  33. Hackstadt AJ, Hess AM (2009) Filtering for increased power for microarray data analysis. BMC Bioinformatics 10:11. https://doi.org/10.1186/1471-2105-10-11

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hendriks MMWB, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, Smilde AK (2011) Data-processing strategies for metabolomics studies. Trac Trend Anal Chem 30:1685–1698. https://doi.org/10.1016/j.trac.2011.04.019

    Article  CAS  Google Scholar 

  35. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039. https://doi.org/10.1021/ac300698c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Myers OD, Sumner SJ, Li S, Barnes S, Du X (2017) Detailed investigation and comparison of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection methods for preprocessing mass spectrometry metabolomics data. Anal Chem 89:8689–8695. https://doi.org/10.1021/acs.analchem.7b01069

    Article  CAS  PubMed  Google Scholar 

  37. Dudzik D, Barbas-Bernardos C, Garcia A, Barbas C (2018) Quality assurance procedures for mass spectrometry untargeted metabolomics. A review. J Pharm Biomed Anal 147:149–173. https://doi.org/10.1016/j.jpba.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  38. Lange E, Tautenhahn R, Neumann S, Gröpl C (2008) Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. BMC Bioinformatics 9:375

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tautenhahn R, Bottcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9:504. https://doi.org/10.1186/1471-2105-9-504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol BioSyst 8:470–481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work has been supported in part by the US National Institutes of Health grant U01 CA235493, Natural Sciences and Engineering Research Council of Canada and Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chong, J., Xia, J. (2020). Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data. In: Li, S. (eds) Computational Methods and Data Analysis for Metabolomics. Methods in Molecular Biology, vol 2104. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0239-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0239-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0238-6

  • Online ISBN: 978-1-0716-0239-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics