Skip to main content

Single-Molecule FRET Assay for Studying Cotranscriptional RNA Folding

  • Protocol
  • First Online:
RNA Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2106))

Abstract

Cotranscriptional RNA folding plays important roles in gene regulation steps such as splicing, transcription termination, and translation initiation. Progression of our understanding of cotranscriptional RNA folding mechanisms is still retarded by the lacking of experimental tools to study the kinetics of cotranscriptional RNA folding properly. In this chapter, we describe fluorescence resonance energy transfer (FRET) assay that enables the study of RNA cotranscriptional folding at the single-molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badelt S, Hammer S, Flamm C, Hofacker IL (2015) Chapter 8–thermodynamic and kinetic folding of riboswitches. In: Chen S-J, Burke-Aguero DH (eds) Methods in enzymology. Academic Press: Cambridge, Massachusetts, US, pp 193–213. https://doi.org/10.1016/bs.mie.2014.10.060

  2. Draper DE (2008) RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys J 95:5489–5495. https://doi.org/10.1529/biophysj.108.131813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhaskaran H, Russell R (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449:1014–1018. https://doi.org/10.1038/nature06235

    Article  CAS  Google Scholar 

  4. Neuman KC, Abbondanzieri EA, Landick R et al (2003) Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115:437–447. https://doi.org/10.1016/S0092-8674(03)00845-6

    Article  CAS  PubMed  Google Scholar 

  5. Pan T, Sosnick T (2006) Rna folding during transcription. Annu Rev Biophys Biomol Struct 35:161–175. https://doi.org/10.1146/annurev.biophys.35.040405.102053

    Article  CAS  PubMed  Google Scholar 

  6. Anthony PC, Perez CF, García-García C, Block SM (2012) Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer. Proc Natl Acad Sci 109:1485–1489. https://doi.org/10.1073/pnas.1115045109

    Article  PubMed  Google Scholar 

  7. Uhm H, Bae S, Lee M, Hohng S (2016) Single-molecule FRET combined with magnetic tweezers at low force regime. Bull Kor Chem Soc 37:408–410. https://doi.org/10.1002/bkcs.10688

    Article  CAS  Google Scholar 

  8. Uhm H, Hohng S (2017) Ligand recognition mechanism of thiamine pyrophosphate riboswitch aptamer. Bull Kor Chem Soc 38:1465–1473. https://doi.org/10.1002/bkcs.11328

    Article  CAS  Google Scholar 

  9. Uhm H, Kang W, Ha KS et al (2018) Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch. Proc Natl Acad Sci 115:331–336. https://doi.org/10.1073/pnas.1712983115

    Article  CAS  PubMed  Google Scholar 

  10. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156–158. https://doi.org/10.1364/OL.33.000156

    Article  PubMed  Google Scholar 

  11. Hwang W, Bae S, Hohng S (2012) Autofocusing system based on optical astigmatism analysis of single-molecule images. Opt Express 20:29353–29360. https://doi.org/10.1364/OE.20.029353

    Article  CAS  PubMed  Google Scholar 

  12. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516. https://doi.org/10.1038/nmeth.1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hohng S, Lee S, Lee J, Jo MH (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem Soc Rev 43:1007–1013. https://doi.org/10.1039/C3CS60184F

    Article  CAS  PubMed  Google Scholar 

  14. Kapanidis AN, Lee NK, Laurence TA et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci 101:8936–8941. https://doi.org/10.1073/pnas.0401690101

    Article  CAS  PubMed  Google Scholar 

  15. Daube SS, von Hippel P (1992) Functional transcription elongation complexes from synthetic RNA-DNA bubble duplexes. Science 258:1320–1324. https://doi.org/10.1126/science.1280856

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Creative Research Initiative program (2009-0081562) to SH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungchul Hohng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Uhm, H., Hohng, S. (2020). Single-Molecule FRET Assay for Studying Cotranscriptional RNA Folding. In: Heise, T. (eds) RNA Chaperones. Methods in Molecular Biology, vol 2106. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0231-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0231-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0230-0

  • Online ISBN: 978-1-0716-0231-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics