Skip to main content

Fast and Efficient Measurement of Clinical and Biological Samples Using Immunoassay-Based Multiplexing Systems

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2102))

Abstract

Immunoassay is one of the most commonly used biomedical techniques to detect the expression of an antibody or an antigen in a test sample. Enzyme-linked immunosorbent assay (ELISA) has been used for a variety of applications including diagnostic tools and quality controls. However, one of the main limitations of ELISA is its lack of multiplexing ability, so ELISA may not be an efficient diagnostic tool when a measurement of multiple determinants is needed for samples with limited quantity such as blood or biological samples from newborns or babies. Although similar to ELISA in assay measurement, multiplex platforms such as bead-based Luminex and multi-array-based MSD (Meso Scale Discovery) are widely used to measure multiple biomarkers from a single analysis. Luminex is a xMAP-based technology that combines several different technologies to provide an efficient and accurate measurement of multiple analytes from a single sample. The multiplexing can be achieved because up to 100 distinct Luminex color-coded microsphere bead sets can be coated with a reagent specific to a particular bioassay, allowing the capture and detection of specific analytes from a sample. Using Multi-array and electrochemiluminescence technologies, the MSD platform provides the multiplex capability with similar consistence as observed in ELISA. Various biological samples that can be analyzed by both Luminex and MSD systems include serum, plasma, tissue and cell lysate, saliva, sputum, and bronchoalveolar Lavage (BAL). The most common Luminex and MSD-based assays are to detect a combined set of cytokines to provide a measurement of cytokine expression profiling for a diagnostic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barboni de Stella AM, Guida N, Del Rio Alonso L, Grimoldi F, Guisande AJ, Picos JA (1999) ELISA and the diagnosis of psittacosis-ornithosis. Rev Argent Microbiol 31(Suppl 1):33–34

    PubMed  Google Scholar 

  2. Engvall E (1977) Quantitative enzyme immunoassay (ELISA) in microbiology. Med Biol 55:193–200

    CAS  PubMed  Google Scholar 

  3. Itoh K, Suzuki T (2002) Antibody-guided selection using capture-sandwich ELISA. Methods Mol Biol 178:195–199

    CAS  PubMed  Google Scholar 

  4. Peterson EM (1981) ELISA: a tool for the clinical microbiologist. Am J Med Technol 47:905–908

    CAS  PubMed  Google Scholar 

  5. Voller A, Bartlett A, Bidwell DE (1978) Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol 31:507–520

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Voller A, Bidwell DE, Bartlett A (1982) ELISA techniques in virology. Lab Res Methods Biol Med 5:59–81

    CAS  PubMed  Google Scholar 

  7. Yoshihara N (1995) ELISA for diagnosis of infections by viruses. Nippon Rinsho 53:2277–2282

    CAS  PubMed  Google Scholar 

  8. Hernandez HJ, Longo IM, Peixinho ZF, Lacouture C, Mendes NF (1990) Third generation ELISA using a synthetic peptide to detect anti-HIV. A rapid and low-cost method. Medicina (B Aires) 50:87–88

    CAS  Google Scholar 

  9. Fawcett PT, Gibney KM, Doughty RA (1989) Glove powder and HIV ELISA tests. Lancet 1:1082–1083

    CAS  PubMed  Google Scholar 

  10. Nuttall P, Pratt R, Nuttall L, Daly C (1986) False-positive results with HIV ELISA kits. Lancet 2:512–513

    CAS  PubMed  Google Scholar 

  11. dupont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL (2005) Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 66:175–191

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li YQ, Duan ZJ (2010) Application of Luminex xMAP technology in infectious diseases. Bing Du Xue Bao 26:158–161

    PubMed  Google Scholar 

  13. Seideman J, Peritt D (2002) A novel monoclonal antibody screening method using the Luminex-100 microsphere system. J Immunol Methods 267:165–171

    CAS  PubMed  Google Scholar 

  14. Lawson S, Lunney J, Zuckermann F et al (2010) Development of an 8-plex Luminex assay to detect swine cytokines for vaccine development: assessment of immunity after porcine reproductive and respiratory syndrome virus (PRRSV) vaccination. Vaccine 28:5356–5364

    CAS  PubMed  Google Scholar 

  15. Djoba Siawaya JF, Roberts T, Babb C et al (2008) An evaluation of commercial fluorescent bead-based luminex cytokine assays. PLoS One 3:e2535

    PubMed  PubMed Central  Google Scholar 

  16. Lash GE, Scaife PJ, Innes BA et al (2006) Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant. J Immunol Methods 309:205–208

    CAS  PubMed  Google Scholar 

  17. Liu MY, Xydakis AM, Hoogeveen RC et al (2005) Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. Clin Chem 51:1102–1109

    CAS  PubMed  Google Scholar 

  18. Dehqanzada ZA, Storrer CE, Hueman MT et al (2007) Assessing serum cytokine profiles in breast cancer patients receiving a HER2/neu vaccine using Luminex technology. Oncol Rep 17:687–694

    CAS  PubMed  Google Scholar 

  19. Datta SC, Opp MR (2008) Lipopolysaccharide-induced increases in cytokines in discrete mouse brain regions are detectable using Luminex xMAP technology. J Neurosci Methods 175:119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Giavedoni LD (2005) Simultaneous detection of multiple cytokines and chemokines from nonhuman primates using luminex technology. J Immunol Methods 301:89–101

    CAS  PubMed  Google Scholar 

  21. Szczepaniak WS, Zhang Y, Hagerty S et al (2008) Sphingosine 1-phosphate rescues canine LPS-induced acute lung injury and alters systemic inflammatory cytokine production in vivo. Transl Res 152:213–224

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Keyes KA, Mann L, Cox K et al (2003) Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex Multiplex technology. Cancer Chemother Pharmacol 51:321–327

    CAS  PubMed  Google Scholar 

  23. Dolezalova R, Lacinova Z, Dolinkova M et al (2007) Changes of endocrine function of adipose tissue in anorexia nervosa: comparison of circulating levels versus subcutaneous mRNA expression. Clin Endocrinol 67:674–678

    CAS  Google Scholar 

  24. Thrailkill KM, Moreau CS, Cockrell G et al (2005) Physiological matrix metalloproteinase concentrations in serum during childhood and adolescence, using Luminex Multiplex technology. Clin Chem Lab Med 43:1392–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dozmorov M, Wu W, Chakrabarty K et al (2009) Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-alpha and NF-kappab are key components of the innate immune response to the pathogen. BMC Infect Dis 9:152

    PubMed  PubMed Central  Google Scholar 

  26. Paradis FW, Simard R, Gaudet D (2010) Quantitative assay for the detection of the V617F variant in the Janus kinase 2 (JAK2) gene using the Luminex xMAP technology. BMC Med Genet 11:54

    PubMed  PubMed Central  Google Scholar 

  27. Desai N, Wu H, George K, Gonda SR, Cucinotta FA (2004) Simultaneous measurement of multiple radiation-induced protein expression profiles using the Luminex(TM) system. Adv Space Res 34:1362–1367

    CAS  PubMed  Google Scholar 

  28. Strom CM, Janeszco R, Quan F et al (2006) Technical validation of a TM biosciences Luminex-based multiplex assay for detecting the American college of medical genetics recommended cystic fibrosis mutation panel. J Mol Diagn 8:371–375

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dunbar SA, Jacobson JW (2000) Application of the luminex LabMAP in rapid screening for mutations in the cystic fibrosis transmembrane conductance regulator gene: a pilot study. Clin Chem 46:1498–1500

    CAS  PubMed  Google Scholar 

  30. Eng HS, Bennett G, Bardy P, Coghlan P, Russ GR, Coates PT (2009) Clinical significance of anti-HLA antibodies detected by Luminex: enhancing the interpretation of CDC-BXM and important post-transplantation monitoring tools. Hum Immunol 70:595–599

    CAS  PubMed  Google Scholar 

  31. Cesbron-Gautier A, Simon P, Achard L, Cury S, Follea G, Bignon JD (2004) Luminex technology for HLA typing by PCR-SSO and identification of HLA antibody specificities. Ann Biol Clin (Paris) 62:93–98

    CAS  Google Scholar 

  32. Buliard A, Fortenfant F, Ghillani-Dalbin P, Musset L, Oksman F, Olsson NO (2005) Analysis of nine autoantibodies associated with systemic autoimmune diseases using the Luminex technology. Results of a multicenter study. Ann Biol Clin (Paris) 63:51–58

    CAS  Google Scholar 

  33. Cludts I, Meager A, Thorpe R, Wadhwa M (2010) Detection of neutralizing interleukin-17 antibodies in autoimmune polyendocrinopathy syndrome-1 (APS-1) patients using a novel non-cell based electrochemiluminescence assay. Cytokine 50:129–137

    CAS  PubMed  Google Scholar 

  34. Pilyugin M, Descloux P, Andre PA et al (2017) BARD1 serum autoantibodies for the detection of lung cancer. PLoS One 12:e0182356

    PubMed  PubMed Central  Google Scholar 

  35. Zhao Z, Miao D, Michels A et al (2016) A multiplex assay combining insulin, GAD, IA-2 and transglutaminase autoantibodies to facilitate screening for pre-type 1 diabetes and celiac disease. J Immunol Methods 430:28–32

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinke SA, Cieniewicz AM, Kirchner T et al (2018) Unique pharmacology of a novel allosteric agonist/sensitizer insulin receptor monoclonal antibody. Mol Metab 10:87–99

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu Y, Young J, Meng YG (2007) Electrochemiluminescence to detect surface proteins on live cells. Curr Opin Pharmacol 7:541–546

    CAS  PubMed  Google Scholar 

  38. Pang S, Ahsan ES, Foy CA (2010) Improved detection of cell surface proteins using an electrochemiluminescent cell-binding assay. J Immunol Methods 362:176–179

    CAS  PubMed  Google Scholar 

  39. Santulli-Marotto S, Gervais A, Fisher J et al (2015) Discovering molecules that regulate efferocytosis using primary human macrophages and high content imaging. PLoS One 10:e0145078

    PubMed  PubMed Central  Google Scholar 

  40. Centola M, Cavet G, Shen Y et al (2013) Development of a multi-biomarker disease activity test for rheumatoid arthritis. PLoS One 8:e60635

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimizu Y, Furuya H, Bryant Greenwood P et al (2016) A multiplex immunoassay for the non-invasive detection of bladder cancer. J Transl Med 14:31

    PubMed  PubMed Central  Google Scholar 

  42. Lee JS, Rosengart MR, Kondragunta V et al (2007) Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res 8:64

    PubMed  PubMed Central  Google Scholar 

  43. Rosas IO, Richards TJ, Konishi K et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5:e93

    PubMed  PubMed Central  Google Scholar 

  44. Ajala O, Zhang Y, Gupta A, Bon J, Sciurba F, Chandra D (2018) Decreased serum TRAIL is associated with increased mortality in smokers with comorbid emphysema and coronary artery disease. Respir Med 145:21–27

    PubMed  PubMed Central  Google Scholar 

  45. Bon J, Zhang Y, Leader JK et al (2018) Radiographic emphysema, circulating bone biomarkers, and progressive bone mineral density loss in smokers. Ann Am Thorac Soc 15:615–621

    PubMed  PubMed Central  Google Scholar 

  46. Bon JM, Zhang Y, Duncan SR et al (2010) Plasma inflammatory mediators associated with bone metabolism in COPD. COPD 7:186–191

    PubMed  PubMed Central  Google Scholar 

  47. Grace J, Leader JK, Nouraie SM et al (2017) Mediastinal and subcutaneous chest fat are differentially associated with emphysema progression and clinical outcomes in smokers. Respiration 94:501–509

    CAS  PubMed  Google Scholar 

  48. Richards TJ, Kaminski N, Baribaud F et al (2012) Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 185:67–76

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bon JM, Leader JK, Weissfeld JL et al (2009) The influence of radiographic phenotype and smoking status on peripheral blood biomarker patterns in chronic obstructive pulmonary disease. PLoS One 4:e6865

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Peter Di .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y., Li, X., Di, Y.P. (2020). Fast and Efficient Measurement of Clinical and Biological Samples Using Immunoassay-Based Multiplexing Systems. In: Keohavong, P., Singh, K., Gao, W. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 2102. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0223-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0223-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0222-5

  • Online ISBN: 978-1-0716-0223-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics