Skip to main content

Knocking Out Multiple Genes in Cultured Primary Neurons to Study Tubulin Posttranslational Modifications

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Microtubules, as integral part of the eukaryotic cytoskeleton, exert numerous essential functions in cells. A mechanism to control these diverse functions are the posttranslational modifications of tubulin. Despite being known for decades, relatively little insight into the cellular functions of these modifications has been gained so far. The discovery of tubulin-modifying enzymes and a growing number of available knockout mice now allow working with primary cells from those mouse models to address biological functions and molecular mechanisms behind those modifications. However, a number of those mouse models show either lethality or sterility, making it difficult to impossible to obtain a sufficient number of animals for a systematic study with primary cells. Moreover, many of those modifications are controlled by several redundant enzymes, and it is often necessary to knock out several enzymes in parallel to obtain a significant change in a given tubulin modification. Here we describe a method to generate primary cells with combinatorial knockout genotypes using conditional knockout mice. The conditional alleles are converted into knockout in the cultured primary cells by transduction with a lentivirus encoding cre-recombinase. This approach has allowed us to knock out the two main brain deglutamylases in mouse primary neurons, which leads to strongly increased polyglutamylation in these cells. Our method can be applied to measure different cellular processes, such as axonal transport, for which it can be combined with the expression of different fluorescent reporters to label intracellular proteins. Using a panel of conditional knockout mice, our method can further be applied to study the functions of a variety of tubulin modifications that require simultaneous knockout of multiple genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandell JW, Banker GA (1995) The microtubule cytoskeleton and the development of neuronal polarity. Neurobiol Aging 16(3):229–237; discussion 238

    Article  CAS  Google Scholar 

  2. Brady ST, Morfini GA (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 105:273–282. https://doi.org/10.1016/j.nbd.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Janke C (2014) The tubulin code: Molecular components, readout mechanisms, and functions. J Cell Biol 206(4):461–472. https://doi.org/10.1083/jcb.201406055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12(12):773–786. https://doi.org/10.1038/nrm3227

    Article  CAS  PubMed  Google Scholar 

  5. Magiera MM, Singh P, Janke C (2018) SnapShot: functions of tubulin posttranslational modifications. Cell 173(6):1552–1552 e1551. https://doi.org/10.1016/j.cell.2018.05.032

    Article  CAS  PubMed  Google Scholar 

  6. Gadadhar S, Bodakuntla S, Natarajan K, Janke C (2017) The tubulin code at a glance. J Cell Sci 130(8):1347–1353. https://doi.org/10.1242/jcs.199471

    Article  CAS  PubMed  Google Scholar 

  7. Magiera MM, Bodakuntla S, Ziak J, Lacomme S, Marques Sousa P, Leboucher S, Hausrat TJ, Bosc C, Andrieux A, Kneussel M, Landry M, Calas A, Balastik M, Janke C (2018) Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 37(23):e100440. https://doi.org/10.15252/embj.2018100440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ikegami K, Mukai M, Tsuchida J-i, Heier RL, Macgregor GR, Setou M (2006) TTLL7 is a mammalian beta-tubulin polyglutamylase required for growth of MAP2-positive neurites. J Biol Chem 281(41):30707–30716

    Article  CAS  Google Scholar 

  9. Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA (2013) AlphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat Commun 4:1962. https://doi.org/10.1038/ncomms2962

    Article  CAS  PubMed  Google Scholar 

  10. Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme J-C, Bosson A, Peris L, Gold ND, Lacroix B, Bosch Grau M, Bec N, Larroque C, Desagher S, Holzer M, Andrieux A, Moutin M-J, Janke C (2010) A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143(4):564–578. https://doi.org/10.1016/j.cell.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  11. Erck C, Peris L, Andrieux A, Meissirel C, Gruber AD, Vernet M, Schweitzer A, Saoudi Y, Pointu H, Bosc C, Salin PA, Job D, Wehland J (2005) A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc Natl Acad Sci U S A 102(22):7853–7858

    Article  CAS  Google Scholar 

  12. Rocha C, Papon L, Cacheux W, Marques Sousa P, Lascano V, Tort O, Giordano T, Vacher S, Lemmers B, Mariani P, Meseure D, Medema JP, Bièche I, Hahne M, Janke C (2014) Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J 33(19):2247–2260. https://doi.org/10.15252/embj.201488466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I, Janke C (2017) Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci 130:938–949. https://doi.org/10.1242/jcs.199091

    Article  CAS  PubMed  Google Scholar 

  14. Gadadhar S, Dadi H, Bodakuntla S, Schnitzler A, Bieche I, Rusconi F, Janke C (2017) Tubulin glycylation controls primary cilia length. J Cell Biol 216(9):2701–2713. https://doi.org/10.1083/jcb.201612050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giordano T, Gadadhar S, Bodakuntla S, Straub J, Leboucher S, Martinez G, Chemlali W, Bosc C, Andrieux A, Bieche I, Arnoult C, Geimer S, Janke C (2019) Loss of the deglutamylase CCP5 perturbs multiple steps of spermatogenesis and leads to male infertility. J Cell Sci 132(3). https://doi.org/10.1242/jcs.226951

  16. Silva CG, Peyre E, Adhikari MH, Tielens S, Tanco S, Van Damme P, Magno L, Krusy N, Agirman G, Magiera MM, Kessaris N, Malgrange B, Andrieux A, Janke C, Nguyen L (2018) Cell-intrinsic control of interneuron migration drives cortical morphogenesis. Cell 172(5):1063–1078. https://doi.org/10.1016/j.cell.2018.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilmore-Hall S, Kuo J, Ward JM, Zahra R, Morrison RS, Perkins G, La Spada AR (2019) CCP1 promotes mitochondrial fusion and motility to prevent Purkinje cell neuron loss in pcd mice. J Cell Biol 218(1):206–219. https://doi.org/10.1083/jcb.201709028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marcos S, Moreau J, Backer S, Job D, Andrieux A, Bloch-Gallego E (2009) Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 4(4):e5405

    Article  Google Scholar 

  19. Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J (2010) MEC-17 is an alpha-tubulin acetyltransferase. Nature 467(7312):218–222. https://doi.org/10.1038/nature09324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV (2010) The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A 107(50):21517–21522. https://doi.org/10.1073/pnas.1013728107

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang X-F, Yao T-P (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458

    Article  CAS  Google Scholar 

  22. Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub J-M, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, Eddé B (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308(5729):1758–1762. https://doi.org/10.1126/science.1113010

    Article  CAS  PubMed  Google Scholar 

  23. van Dijk J, Rogowski K, Miro J, Lacroix B, Eddé B, Janke C (2007) A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol Cell 26(3):437–448. https://doi.org/10.1016/j.molcel.2007.04.012

    Article  CAS  PubMed  Google Scholar 

  24. Tort O, Tanco S, Rocha C, Bieche I, Seixas C, Bosc C, Andrieux A, Moutin M-J, Xavier Aviles F, Lorenzo J, Janke C (2014) The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol Biol Cell 25(19):3017–3027. https://doi.org/10.1091/mbc.E14-06-1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeong J-Y, Yim H-S, Ryu J-Y, Lee HS, Lee J-H, Seen D-S, Kang SG (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78(15):5440–5443. https://doi.org/10.1128/AEM.00844-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, Kim M-K, Shin BA, Choi S-Y (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6(4):e18556. https://doi.org/10.1371/journal.pone.0018556PONE-D-11-01024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magiera MM, Janke C (2013) Investigating tubulin posttranslational modifications with specific antibodies. In: Correia JJ, Wilson L (eds) Methods cell biol, Microtubules, in vitro, vol 115. Academic Press, Burlington, pp 247–267. https://doi.org/10.1016/B978-0-12-407757-7.00016-5

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR-10-IDEX-0001-02, the LabEx CelTisPhyBio ANR-11-LBX-0038. CJ is supported by the Institut Curie, the French National Research Agency (ANR) awards ANR-12-BSV2-0007 and ANR-17-CE13-0021, the Institut National du Cancer (INCA) grant 2014-PL BIO-11-ICR-1, and the Fondation pour la Recherche Medicale (FRM) grant DEQ20170336756. MMM is supported by the EMBO short-term fellowship ASTF 148-2015 and by the Fondation Vaincre Alzheimer grant FR-16055p, and SB by the FRM grant FDT201805005465. We thank C. Alberti, E. Belloir, F. Bertrand, V. Dangles-Marie, I. Grandjean, C. Caspersen, H. Hermange, A. Thadal, G. Buhagiar, C. Serieyssol, S. Gadadhar, and M. Sittewelle (Institut Curie) for technical assistance. We are grateful to M.-N. Soler, C. Lovo, and L. Besse from the PICT-IBiSA@Orsay Imaging Facility of the Institut Curie supported by the ANR through the “Investment for the future” program (France-BioImaging, ANR-10-INSB-04), and to N. Manel (Institut Curie, Paris) for material and advice for the lentivirus production. We would like to thank F. Del Bene, V. Marthiens (Institut Curie), and C. González-Billault (University of Chile, Santiago, Chile) for instructive discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Janke or Maria M. Magiera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bodakuntla, S., Janke, C., Magiera, M.M. (2020). Knocking Out Multiple Genes in Cultured Primary Neurons to Study Tubulin Posttranslational Modifications. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics