Skip to main content

MAIT Cells in Health and Disease

  • Protocol
  • First Online:
MAIT Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2098))

Abstract

Mucosal-associated invariant T (MAIT) cells are a newly described subset of T cells that are found in the blood and are enriched in many tissues, particularly in the liver. MAIT cells express a semi-invariant T cell receptor restricted by the MHC class I-related (MR1) molecule. MAIT cells are activated in a MR1-dependent manner in response to microbial-derived riboflavin metabolites which leads to rapid effector functions, but they can also be activated in a MR1-independent manner by cytokines and viruses. The use of mice models and MR1 tetramers, among other recent methodological advances, have provided more insight into the development, mode of activation, characterization in different diseases and tissues of MAIT cells. In this chapter, we provide an overview of MAIT cells and yet remaining questions about their potential therapeutic role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. https://doi.org/10.1038/nature11605

    Article  CAS  PubMed  Google Scholar 

  2. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164–169. https://doi.org/10.1038/nature01433

    Article  CAS  PubMed  Google Scholar 

  3. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117(4):1250–1259. https://doi.org/10.1182/blood-2010-08-303339

    Article  CAS  PubMed  Google Scholar 

  4. Kurioka A, Walker LJ, Klenerman P, Willberg CB (2016) MAIT cells: new guardians of the liver. Clin Transl Immunol 5(8):e98. https://doi.org/10.1038/cti.2016.51

    Article  CAS  Google Scholar 

  5. Dias J, Boulouis C, Gorin JB, van den Biggelaar R, Lal KG, Gibbs A, Loh L, Gulam MY, Sia WR, Bari S, Hwang WYK, Nixon DF, Nguyen S, Betts MR, Buggert M, Eller MA, Broliden K, Tjernlund A, Sandberg JK, Leeansyah E (2018) The CD4(−)CD8(−) MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8(+) MAIT cell pool. Proc Natl Acad Sci U S A 115(49):E11513–E11522. https://doi.org/10.1073/pnas.1812273115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, De Libero G, Mori L (2014) Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nat Commun 5:3866. https://doi.org/10.1038/ncomms4866

    Article  CAS  PubMed  Google Scholar 

  7. Dias J, Leeansyah E, Sandberg JK (2017) Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A 114:E5434–E5443. https://doi.org/10.1073/pnas.1705759114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, Beaudoin L, Da Silva J, Allatif O, Rossjohn J, Kjer-Nielsen L, McCluskey J, Ledoux S, Genser L, Torcivia A, Soudais C, Lantz O, Boitard C, Aron-Wisnewsky J, Larger E, Clement K, Lehuen A (2015) Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 125(4):1752–1762. https://doi.org/10.1172/JCI78941

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma PK, Wong EB, Napier RJ, Bishai WR, Ndung’u T, Kasprowicz VO, Lewinsohn DA, Lewinsohn DM, Gold MC (2015) High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology 145(3):443–453. https://doi.org/10.1111/imm.12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dias J, Sobkowiak MJ, Sandberg JK, Leeansyah E (2016) Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity. J Leukoc Biol 100(1):233–240. https://doi.org/10.1189/jlb.4TA0815-391RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V, Mondot S, Mburu Y, Lambert M, Azarnoush S, Diana JS, Virlouvet AL, Peuchmaur M, Schmitz T, Dalle JH, Lantz O, Biran V, Caillat-Zucman S (2018) Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J Exp Med 215:459–479. https://doi.org/10.1084/jem.20171739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SB, Meehan B, Chen Z, Whittle B, Liu L, Fairlie DP, Goodnow CC, McCluskey J, Rossjohn J, Uldrich AP, Pellicci DG, Godfrey DI (2015) Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med 212(7):1095–1108. https://doi.org/10.1084/jem.20142110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z, Reantragoon R, Meehan B, Cao H, Williamson NA, Strugnell RA, Van Sinderen D, Mak JY, Fairlie DP, Kjer-Nielsen L, Rossjohn J, McCluskey J (2014) T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509(7500):361–365. https://doi.org/10.1038/nature13160

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto K, Hirai M, Kurosawa Y (1995) A gene outside the human MHC related to classical HLA class I genes. Science 269(5224):693–695

    Article  CAS  PubMed  Google Scholar 

  15. Riegert P, Wanner V, Bahram S (1998) Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J Immunol 161(8):4066–4077

    CAS  PubMed  Google Scholar 

  16. Xiao X, Liu B, Ma X, Yang S, Cai J (2019) Molecular cloning and characterization of the pig MHC class-related MR1 gene. Dev Comp Immunol 96:58–67. https://doi.org/10.1016/j.dci.2019.02.020

    Article  CAS  PubMed  Google Scholar 

  17. Boudinot P, Mondot S, Jouneau L, Teyton L, Lefranc MP, Lantz O (2016) Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. Proc Natl Acad Sci U S A 113(21):E2983–E2992. https://doi.org/10.1073/pnas.1600674113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, Premel V, Martin E, Kachaner A, Duban L, Ingersoll MA, Rabot S, Jaubert J, De Villartay JP, Soudais C, Lantz O (2015) Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J Clin Invest 125(11):4171–4185. https://doi.org/10.1172/JCI82424

    Article  PubMed  PubMed Central  Google Scholar 

  19. McWilliam HE, Eckle SB, Theodossis A, Liu L, Chen Z, Wubben JM, Fairlie DP, Strugnell RA, Mintern JD, McCluskey J, Rossjohn J, Villadangos JA (2016) The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat Immunol 17(5):531–537. https://doi.org/10.1038/ni.3416

    Article  CAS  PubMed  Google Scholar 

  20. Ussher JE, van Wilgenburg B, Hannaway RF, Ruustal K, Phalora P, Kurioka A, Hansen TH, Willberg CB, Phillips RE, Klenerman P (2016) TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur J Immunol 46(7):1600–1614. https://doi.org/10.1002/eji.201545969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salerno-Goncalves R, Rezwan T, Sztein MB (2014) B cells modulate mucosal associated invariant T cell immune responses. Front Immunol 4:511. https://doi.org/10.3389/fimmu.2013.00511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harriff MJ, Karamooz E, Burr A, Grant WF, Canfield ET, Sorensen ML, Moita LF, Lewinsohn DM (2016) Endosomal MR1 trafficking plays a key role in presentation of Mycobacterium tuberculosis ligands to MAIT cells. PLoS Pathog 12(3):e1005524. https://doi.org/10.1371/journal.ppat.1005524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8(6):e1000407. https://doi.org/10.1371/journal.pbio.1000407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, de Lara C, Cole S, Vasanawathana S, Limpitikul W, Malasit P, Young D, Denney L, Consortium S-H, Moore MD, Fabris P, Giordani MT, Oo YH, Laidlaw SM, Dustin LB, Ho LP, Thompson FM, Ramamurthy N, Mongkolsapaya J, Willberg CB, Screaton GR, Klenerman P (2016) MAIT cells are activated during human viral infections. Nat Commun 7:11653. https://doi.org/10.1038/ncomms11653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11(8):701–708. https://doi.org/10.1038/ni.1890

    Article  CAS  PubMed  Google Scholar 

  26. Shaler CR, Choi J, Rudak PT, Memarnejadian A, Szabo PA, Tun-Abraham ME, Rossjohn J, Corbett AJ, McCluskey J, McCormick JK, Lantz O, Hernandez-Alejandro R, Haeryfar SMM (2017) MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biol 15(6):e2001930. https://doi.org/10.1371/journal.pbio.2001930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeffery HC, van Wilgenburg B, Kurioka A, Parekh K, Stirling K, Roberts S, Dutton EE, Hunter S, Geh D, Braitch MK, Rajanayagam J, Iqbal T, Pinkney T, Brown R, Withers DR, Adams DH, Klenerman P, Oo YH (2016) Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol 64(5):1118–1127. https://doi.org/10.1016/j.jhep.2015.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernal I, Hofmann JD, Bulitta B, Klawonn F, Michel AM, Jahn D, Neumann-Schaal M, Bruder D, Jansch L (2018) Clostridioides difficile activates human mucosal-associated invariant T cells. Front Microbiol 9:2532. https://doi.org/10.3389/fmicb.2018.02532

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jahreis S, Bottcher S, Hartung S, Rachow T, Rummler S, Dietl AM, Haas H, Walther G, Hochhaus A, von Lilienfeld-Toal M (2018) Human MAIT cells are rapidly activated by Aspergillus spp. in an APC-dependent manner. Eur J Immunol 48(10):1698–1706. https://doi.org/10.1002/eji.201747312

    Article  CAS  PubMed  Google Scholar 

  30. Meermeier EW, Harriff MJ, Karamooz E, Lewinsohn DM (2018) MAIT cells and microbial immunity. Immunol Cell Biol 96(6):607–617. https://doi.org/10.1111/imcb.12022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, Mettke E, Kurioka A, Hansen TH, Klenerman P, Willberg CB (2014) CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J Immunol 44(1):195–203. https://doi.org/10.1002/eji.201343509

    Article  CAS  PubMed  Google Scholar 

  32. Sattler A, Dang-Heine C, Reinke P, Babel N (2015) IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur J Immunol 45(8):2286–2298. https://doi.org/10.1002/eji.201445313

    Article  CAS  PubMed  Google Scholar 

  33. Leeansyah E, Svard J, Dias J, Buggert M, Nystrom J, Quigley MF, Moll M, Sonnerborg A, Nowak P, Sandberg JK (2015) Arming of MAIT cell Cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLoS Pathog 11(8):e1005072. https://doi.org/10.1371/journal.ppat.1005072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Solders M, Gorchs L, Erkers T, Lundell AC, Nava S, Gidlof S, Tiblad E, Magalhaes I, Kaipe H (2017) MAIT cells accumulate in placental intervillous space and display a highly cytotoxic phenotype upon bacterial stimulation. Sci Rep 7(1):6123. https://doi.org/10.1038/s41598-017-06430-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilgenburg BV, Loh L, Chen Z, Pediongco TJ, Wang H, Shi M, Zhao Z, Koutsakos M, Nussing S, Sant S, Wang Z, D’Souza C, Jia X, Almeida CF, Kostenko L, Eckle SBG, Meehan BS, Kallies A, Godfrey DI, Reading PC, Corbett AJ, McCluskey J, Klenerman P, Kedzierska K, Hinks TSC (2018) MAIT cells contribute to protection against lethal influenza infection in vivo. Nat Commun 9(1):4706. https://doi.org/10.1038/s41467-018-07207-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S, Corbett AJ, Liu L, Fairlie DP, Crowe J, Rossjohn J, Xu J, Doherty PC, McCluskey J, Kedzierska K (2016) Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc Natl Acad Sci U S A 113(36):10133–10138. https://doi.org/10.1073/pnas.1610750113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ussher JE, Willberg CB, Klenerman P (2018) MAIT cells and viruses. Immunol Cell Biol 96(6):630–641. https://doi.org/10.1111/imcb.12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eberhard JM, Kummer S, Hartjen P, Hufner A, Diedrich T, Degen O, Lohse AW, van Lunzen J, Schulze Zur Wiesch J (2016) Reduced CD161(+) MAIT cell frequencies in HCV and HIV/HCV co-infection: Is the liver the heart of the matter? J Hepatol 65(6):1261–1263. https://doi.org/10.1016/j.jhep.2016.07.031

    Article  PubMed  Google Scholar 

  39. Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A, Huhn MH, Adelmann K, Kang YH, Fergusson JR, Simmonds P, Goulder P, Hansen TH, Fox J, Gunthard HF, Khanna N, Powrie F, Steel A, Gazzard B, Phillips RE, Frater J, Uhlig H, Klenerman P (2013) Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood 121(6):951–961. https://doi.org/10.1182/blood-2012-06-436436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dias J, Hengst J, Parrot T, Leeansyah E, Lunemann S, Malone DFG, Hardtke S, Strauss O, Zimmer CL, Berglin L, Schirdewahn T, Ciesek S, Marquardt N, von Hahn T, Manns MP, Cornberg M, Ljunggren HG, Wedemeyer H, Sandberg JK, Bjorkstrom NK (2019) Chronic hepatitis delta virus infection leads to functional impairment and severe loss of MAIT cells. J Hepatol 71:301–312. https://doi.org/10.1016/j.jhep.2019.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y, Bessoles S, Soudais C, Lantz O (2013) Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol 191(12):6002–6009. https://doi.org/10.4049/jimmunol.1301212

    Article  CAS  PubMed  Google Scholar 

  42. Koay HF, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF, Russ BE, Nold-Petry CA, Nold MF, Bedoui S, Chen Z, Corbett AJ, Eckle SB, Meehan B, d’Udekem Y, Konstantinov IE, Lappas M, Liu L, Goodnow CC, Fairlie DP, Rossjohn J, Chong MM, Kedzierska K, Berzins SP, Belz GT, McCluskey J, Uldrich AP, Godfrey DI, Pellicci DG (2016) A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol 17(11):1300–1311. https://doi.org/10.1038/ni.3565

    Article  CAS  PubMed  Google Scholar 

  43. Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM, Langley SM, Streeter PR, Lewinsohn DA, Lewinsohn DM (2013) Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 6(1):35–44. https://doi.org/10.1038/mi.2012.45

    Article  CAS  PubMed  Google Scholar 

  44. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7(3):e54. https://doi.org/10.1371/journal.pbio.1000054

    Article  CAS  PubMed  Google Scholar 

  45. Leeansyah E, Loh L, Nixon DF, Sandberg JK (2014) Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun 5:3143. https://doi.org/10.1038/ncomms4143

    Article  CAS  PubMed  Google Scholar 

  46. Salou M, Legoux F, Gilet J, Darbois A, du Halgouet A, Alonso R, Richer W, Goubet AG, Daviaud C, Menger L, Procopio E, Premel V, Lantz O (2019) A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J Exp Med 216(1):133–151. https://doi.org/10.1084/jem.20181483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Novak J, Dobrovolny J, Novakova L, Kozak T (2014) The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol 80(4):271–275. https://doi.org/10.1111/sji.12193

    Article  CAS  PubMed  Google Scholar 

  48. Lee OJ, Cho YN, Kee SJ, Kim MJ, Jin HM, Lee SJ, Park KJ, Kim TJ, Lee SS, Kwon YS, Kim N, Shin MG, Shin JH, Suh SP, Ryang DW, Park YW (2014) Circulating mucosal-associated invariant T cell levels and their cytokine levels in healthy adults. Exp Gerontol 49:47–54. https://doi.org/10.1016/j.exger.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  49. Walker LJ, Tharmalingam H, Klenerman P (2014) The rise and fall of MAIT cells with age. Scand J Immunol 80(6):462–463. https://doi.org/10.1111/sji.12237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Z, Wang H, D’Souza C, Sun S, Kostenko L, Eckle SB, Meehan BS, Jackson DC, Strugnell RA, Cao H, Wang N, Fairlie DP, Liu L, Godfrey DI, Rossjohn J, McCluskey J, Corbett AJ (2017) Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol 10(1):58–68. https://doi.org/10.1038/mi.2016.39

    Article  CAS  PubMed  Google Scholar 

  51. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Core M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O (2013) MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 9(10):e1003681. https://doi.org/10.1371/journal.ppat.1003681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P (2015) MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 8(2):429–440. https://doi.org/10.1038/mi.2014.81

    Article  CAS  PubMed  Google Scholar 

  53. Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15(6):388–400. https://doi.org/10.1038/nri3839

    Article  CAS  PubMed  Google Scholar 

  54. Tang XZ, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, Lee KH, Gehring AJ, De Libero G, Bertoletti A (2013) IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 190(7):3142–3152. https://doi.org/10.4049/jimmunol.1203218

    Article  CAS  PubMed  Google Scholar 

  55. Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K, Andersson E, Broliden K, Sandberg JK, Tjernlund A (2016) MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol 10:35–45. https://doi.org/10.1038/mi.2016.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Georgel P, Radosavljevic M, Macquin C, Bahram S (2011) The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol Immunol 48(5):769–775. https://doi.org/10.1016/j.molimm.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  57. Meierovics A, Yankelevich WJ, Cowley SC (2013) MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci U S A 110(33):E3119–E3128. https://doi.org/10.1073/pnas.1302799110

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mpina M, Maurice NJ, Yajima M, Slichter CK, Miller HW, Dutta M, McElrath MJ, Stuart KD, De Rosa SC, McNevin JP, Linsley PS, Abdulla S, Tanner M, Hoffman SL, Gottardo R, Daubenberger CA, Prlic M (2017) Controlled human malaria infection leads to long-lasting changes in innate and innate-like lymphocyte populations. J Immunol 199(1):107–118. https://doi.org/10.4049/jimmunol.1601989

    Article  CAS  PubMed  Google Scholar 

  59. Booth JS, Salerno-Goncalves R, Blanchard TG, Patil SA, Kader HA, Safta AM, Morningstar LM, Czinn SJ, Greenwald BD, Sztein MB (2015) Mucosal-associated invariant T cells in the human gastric mucosa and blood: role in helicobacter pylori infection. Front Immunol 6:466. https://doi.org/10.3389/fimmu.2015.00466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang J, Wang X, An H, Yang B, Cao Z, Liu Y, Su J, Zhai F, Wang R, Zhang G, Cheng X (2014) Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis. Am J Respir Crit Care Med 190(3):329–339. https://doi.org/10.1164/rccm.201401-0106OC

    Article  CAS  PubMed  Google Scholar 

  61. Leung DT, Bhuiyan TR, Nishat NS, Hoq MR, Aktar A, Rahman MA, Uddin T, Khan AI, Chowdhury F, Charles RC, Harris JB, Calderwood SB, Qadri F, Ryan ET (2014) Circulating mucosal associated invariant T cells are activated in Vibrio cholerae O1 infection and associated with lipopolysaccharide antibody responses. PLoS Negl Trop Dis 8(8):e3076. https://doi.org/10.1371/journal.pntd.0003076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salerno-Goncalves R, Luo D, Fresnay S, Magder L, Darton TC, Jones C, Waddington CS, Blohmke CJ, Angus B, Levine MM, Pollard AJ, Sztein MB (2017) Challenge of humans with wild-type Salmonella enterica Serovar Typhi elicits changes in the activation and homing characteristics of mucosal-associated invariant T cells. Front Immunol 8:398. https://doi.org/10.3389/fimmu.2017.00398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J, Hunt PW, Somsouk M, Deeks SG, Martin JN, Moll M, Shacklett BL, Sandberg JK (2013) Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 121(7):1124–1135. https://doi.org/10.1182/blood-2012-07-445429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong EB, Akilimali NA, Govender P, Sullivan ZA, Cosgrove C, Pillay M, Lewinsohn DM, Bishai WR, Walker BD, Ndung’u T, Klenerman P, Kasprowicz VO (2013) Low levels of peripheral CD161++CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection. PLoS One 8(12):e83474. https://doi.org/10.1371/journal.pone.0083474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bolte FJ, O’Keefe AC, Webb LM, Serti E, Rivera E, Liang TJ, Ghany M, Rehermann B (2017) Intra-hepatic depletion of mucosal-associated invariant T cells in hepatitis C virus-induced liver inflammation. Gastroenterology 153(5):1392–1403. e1392. https://doi.org/10.1053/j.gastro.2017.07.043

    Article  PubMed  Google Scholar 

  66. Beudeker BJB, van Oord GW, Arends JE, Schulze Zur Wiesch J, van der Heide MS, de Knegt RJ, Verbon A, Boonstra A, Claassen MAA (2017) Mucosal-associated invariant T-cell frequency and function in blood and liver of HCV mono- and HCV/HIV co-infected patients with advanced fibrosis. Liver Int 38:458–468. https://doi.org/10.1111/liv.13544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barathan M, Mohamed R, Vadivelu J, Chang LY, Saeidi A, Yong YK, Ravishankar Ram M, Gopal K, Velu V, Larsson M, Shankar EM (2016) Peripheral loss of CD8(+) CD161(++) TCRValpha7.2(+) mucosal-associated invariant T cells in chronic hepatitis C virus-infected patients. Eur J Clin Invest 46(2):170–180. https://doi.org/10.1111/eci.12581

    Article  CAS  PubMed  Google Scholar 

  68. Boeijen LL, Montanari NR, de Groen RA, van Oord GW, van der Heide-Mulder M, de Knegt RJ, Boonstra A (2017) Mucosal-associated invariant T cells are more activated in chronic hepatitis B, but not depleted in blood: reversal by antiviral therapy. J Infect Dis 216(8):969–976. https://doi.org/10.1093/infdis/jix425

    Article  CAS  PubMed  Google Scholar 

  69. Paget C, Trottein F (2019) Mechanisms of bacterial Superinfection post-influenza: a role for unconventional T cells. Front Immunol 10:336. https://doi.org/10.3389/fimmu.2019.00336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. von Seth E, Zimmer CL, Reuterwall-Hansson M, Barakat A, Arnelo U, Bergquist A, Ivarsson MA, Bjorkstrom NK (2018) Primary sclerosing cholangitis leads to dysfunction and loss of MAIT cells. Eur J Immunol 48(12):1997–2004. https://doi.org/10.1002/eji.201847608

    Article  CAS  Google Scholar 

  71. Berglin L, Bergquist A, Johansson H, Glaumann H, Jorns C, Lunemann S, Wedemeyer H, Ellis EC, Bjorkstrom NK (2014) In situ characterization of intrahepatic non-parenchymal cells in PSC reveals phenotypic patterns associated with disease severity. PLoS One 9(8):e105375. https://doi.org/10.1371/journal.pone.0105375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hegde P, Weiss E, Paradis V, Wan J, Mabire M, Sukriti S, Rautou PE, Albuquerque M, Picq O, Gupta AC, Ferrere G, Gilgenkrantz H, Kiaf B, Toubal A, Beaudoin L, Letteron P, Moreau R, Lehuen A, Lotersztajn S (2018) Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun 9(1):2146. https://doi.org/10.1038/s41467-018-04450-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Y, Huang B, Jiang X, Chen W, Zhang J, Wei Y, Chen Y, Lian M, Bian Z, Miao Q, Peng Y, Fang J, Wang Q, Tang R, Gershwin ME, Ma X (2018) Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front Immunol 9:1994. https://doi.org/10.3389/fimmu.2018.01994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hengst J, Strunz B, Deterding K, Ljunggren HG, Leeansyah E, Manns MP, Cornberg M, Sandberg JK, Wedemeyer H, Bjorkstrom NK (2016) Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy. Eur J Immunol 46(9):2204–2210. https://doi.org/10.1002/eji.201646447

    Article  CAS  PubMed  Google Scholar 

  75. Cannizzo ES, Cerrone M, Merlini E, van Wilgenburg B, Swadling L, Ancona G, De Bona A, d’Arminio Monforte A, Klenerman P, Marchetti G (2019) Successful direct-acting antiviral therapy in HIV/HCV co-infected patients fails to restore circulating mucosal-associated invariant T cells. Eur J Immunol 49:1127–1129. https://doi.org/10.1002/eji.201948152

    Article  CAS  PubMed  Google Scholar 

  76. Howson LJ, Salio M, Cerundolo V (2015) MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol 6:303. https://doi.org/10.3389/fimmu.2015.00303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sundstrom P, Ahlmanner F, Akeus P, Sundquist M, Alsen S, Yrlid U, Borjesson L, Sjoling A, Gustavsson B, Wong SB, Quiding-Jarbrink M (2015) Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-gamma. J Immunol 195(7):3472–3481. https://doi.org/10.4049/jimmunol.1500258

    Article  CAS  PubMed  Google Scholar 

  78. Huang WC, Hsiao YC, Wu CC, Hsu YT, Chang CL (2019) Less circulating mucosal-associated invariant T cells in patients with cervical cancer. Taiwan J Obstet Gynecol 58(1):117–121. https://doi.org/10.1016/j.tjog.2018.11.022

    Article  PubMed  Google Scholar 

  79. Duan M, Goswami S, Shi JY, Wu LJ, Wang XY, Ma JQ, Zhang Z, Shi Y, Ma LJ, Zhang S, Xi RB, Cao Y, Zhou J, Fan J, Zhang XM, Gao Q (2019) Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin Cancer Res 25(11):3304–3316. https://doi.org/10.1158/1078-0432.CCR-18-3040

    Article  PubMed  Google Scholar 

  80. Park Y-W, Kee S-J (2015) Mucosal-associated invariant T cells: a new player in innate immunity. J Rheum Dis 22(6):337–345

    Article  Google Scholar 

  81. Ling L, Lin Y, Zheng W, Hong S, Tang X, Zhao P, Li M, Ni J, Li C, Wang L, Jiang Y (2016) Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep 6:20,358. https://doi.org/10.1038/srep20358

    Article  CAS  Google Scholar 

  82. Zabijak L, Attencourt C, Guignant C, Chatelain D, Marcelo P, Marolleau JP, Treiner E (2015) Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol Immunother 64(12):1601–1608. https://doi.org/10.1007/s00262-015-1764-7

    Article  CAS  PubMed  Google Scholar 

  83. Shaler CR, Tun-Abraham ME, Skaro AI, Khazaie K, Corbett AJ, Mele T, Hernandez-Alejandro R, Haeryfar SMM (2017) Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol Immunother 66:1563–1575. https://doi.org/10.1007/s00262-017-2050-7

    Article  CAS  PubMed  Google Scholar 

  84. Sundstrom P, Szeponik L, Ahlmanner F, Sundquist M, Wong JSB, Lindskog EB, Gustafsson B, Quiding-Jarbrink M (2019) Tumor-infiltrating mucosal-associated invariant T (MAIT) cells retain expression of cytotoxic effector molecules. Oncotarget 10(29):2810–2823. https://doi.org/10.18632/oncotarget.26866

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mitchell J, Kvedaraite E, von Bahr Greenwood T, Henter JI, Pellicci DG, Berzins SP, Kannourakis G (2018) Altered populations of unconventional T cell lineages in patients with Langerhans cell Histiocytosis. Sci Rep 8(1):16506. https://doi.org/10.1038/s41598-018-34873-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jupp J, Mansour S, Johnson CD, Sanderson J, Fine D, Gadola S (2015) T-cell populations in chronic pancreatitis. Pancreatology 15(4):311–312. https://doi.org/10.1016/j.pan.2015.04.009

    Article  PubMed  Google Scholar 

  87. Rouxel O, Da Silva J, Beaudoin L, Nel I, Tard C, Cagninacci L, Kiaf B, Oshima M, Diedisheim M, Salou M, Corbett A, Rossjohn J, McCluskey J, Scharfmann R, Battaglia M, Polak M, Lantz O, Beltrand J, Lehuen A (2017) Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat Immunol 18(12):1321–1331. https://doi.org/10.1038/ni.3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harms RZ, Lorenzo KM, Corley KP, Cabrera MS, Sarvetnick NE (2015) Altered CD161 bright CD8+ mucosal associated invariant T (MAIT)-like cell dynamics and increased differentiation states among juvenile type 1 diabetics. PLoS One 10(1):e0117335. https://doi.org/10.1371/journal.pone.0117335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harms RZ, Lorenzo-Arteaga KM, Ostlund KR, Smith VB, Smith LM, Gottlieb P, Sarvetnick N (2018) Abnormal T cell frequencies, including cytomegalovirus-associated expansions, distinguish seroconverted subjects at risk for type 1 diabetes. Front Immunol 9:2332. https://doi.org/10.3389/fimmu.2018.02332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuric E, Krogvold L, Hanssen KF, Dahl-Jorgensen K, Skog O, Korsgren O (2018) No evidence for presence of mucosal-associated invariant T cells in the insulitic lesions in patients recently diagnosed with type 1 diabetes. Am J Pathol 188(8):1744–1748. https://doi.org/10.1016/j.ajpath.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  91. Mexhitaj I, Nyirenda MH, Li R, O’Mahony J, Rezk A, Rozenberg A, Moore CS, Johnson T, Sadovnick D, Collins DL, Arnold DL, Gran B, Yeh EA, Marrie RA, Banwell B, Bar-Or A (2019) Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain 142(3):617–632. https://doi.org/10.1093/brain/awz017

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hinks TS (2016) Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology 148(1):1–12. https://doi.org/10.1111/imm.12582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Carolan E, Tobin LM, Mangan BA, Corrigan M, Gaoatswe G, Byrne G, Geoghegan J, Cody D, O’Connell J, Winter DC, Doherty DG, Lynch L, O’Shea D, Hogan AE (2015) Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J Immunol 194(12):5775–5780. https://doi.org/10.4049/jimmunol.1402945

    Article  CAS  PubMed  Google Scholar 

  94. Touch S, Assmann KE, Aron-Wisnewsky J, Marquet F, Rouault C, Fradet M, Mosbah H, Consortium M, Isnard R, Helft G, Lehuen A, Poitou C, Clement K, Andre S, MetaCardis Consortium (2018) Mucosal-associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders. FASEB J:fj201800052RR. https://doi.org/10.1096/fj.201800052RR

    Article  CAS  Google Scholar 

  95. O’Brien A, Loftus RM, Pisarska MM, Tobin LM, Bergin R, Wood NAW, Foley C, Mat A, Tinley FC, Bannan C, Sommerville G, Veerapen N, Besra GS, Sinclair LV, Moynagh PN, Lynch L, Finlay DK, O’Shea D, Hogan AE (2019) Obesity reduces mTORC1 activity in mucosal-associated invariant T cells, driving defective metabolic and functional responses. J Immunol 202(12):3404–3411. https://doi.org/10.4049/jimmunol.1801600

    Article  CAS  PubMed  Google Scholar 

  96. Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL, Carassiti D, Reynolds R, Salvetti M, Calabresi PA, Coles AJ, Battistini L, Martin R, Burt RK, Muraro PA (2013) Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136(Pt 9):2888–2903. https://doi.org/10.1093/brain/awt182

    Article  PubMed  PubMed Central  Google Scholar 

  97. Moore JJ, Massey JC, Ford CD, Khoo ML, Zaunders JJ, Hendrawan K, Barnett Y, Barnett MH, Kyle KA, Zivadinov R, Ma KC, Milliken ST, Sutton IJ, Ma DDF (2019) Prospective phase II clinical trial of autologous haematopoietic stem cell transplant for treatment refractory multiple sclerosis. J Neurol Neurosurg Psychiatry 90(5):514–521. https://doi.org/10.1136/jnnp-2018-319446

    Article  PubMed  Google Scholar 

  98. Novak J, Dobrovolny J, Brozova J, Novakova L, Kozak T (2016) Recovery of mucosal-associated invariant T cells after myeloablative chemotherapy and autologous peripheral blood stem cell transplantation. Clin Exp Med 16(4):529–537. https://doi.org/10.1007/s10238-015-0384-z

    Article  CAS  PubMed  Google Scholar 

  99. Kawaguchi K, Umeda K, Hiejima E, Iwai A, Mikami M, Nodomi S, Saida S, Kato I, Hiramatsu H, Yasumi T, Nishikomori R, Kondo T, Takaori-Kondo A, Heike T, Adachi S (2018) Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation. Int J Hematol 108(1):66–75. https://doi.org/10.1007/s12185-018-2442-2

    Article  PubMed  Google Scholar 

  100. Bhattacharyya A, Hanafi LA, Sheih A, Golob JL, Srinivasan S, Boeckh MJ, Pergam SA, Mahmood S, Baker KK, Gooley TA, Milano F, Fredricks DN, Riddell SR, Turtle CJ (2018) Graft-derived reconstitution of mucosal-associated invariant T cells after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 24(2):242–251. https://doi.org/10.1016/j.bbmt.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  101. Solders M, Erkers T, Gorchs L, Poiret T, Remberger M, Magalhaes I, Kaipe H (2017) Mucosal-associated invariant T cells display a poor reconstitution and altered phenotype after allogeneic hematopoietic stem cell transplantation. Front Immunol 8:1861. https://doi.org/10.3389/fimmu.2017.01861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD, Straube J, Kuns RD, Robb RJ, Henden AS, Cooper L, Lachner N, Gartlan KH, Lantz O, Kjer-Nielsen L, Mak JY, Fairlie DP, Clouston AD, McCluskey J, Rossjohn J, Lane SW, Hugenholtz P, Hill GR (2018) Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest 128(5):1919–1936. https://doi.org/10.1172/JCI91646

    Article  PubMed  PubMed Central  Google Scholar 

  103. Turtle CJ, Swanson HM, Fujii N, Estey EH, Riddell SR (2009) A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 31(5):834–844. https://doi.org/10.1016/j.immuni.2009.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fergusson JR, Ussher JE, Kurioka A, Klenerman P, Walker LJ (2018) High MDR-1 expression by MAIT cells confers resistance to cytotoxic but not immunosuppressive MDR-1 substrates. Clin Exp Immunol 194(2):180–191. https://doi.org/10.1111/cei.13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

HK was supported by the Swedish Research Council, the Swedish Childhood Cancer Foundation, the Cancer Society in Stockholm, the Swedish Cancer Foundation, and Karolinska Institutet. MS was supported by Karolinska Institutet and Stockholm County Council. IM was supported by Karolinska Institutet, Clas Groschinskys Minnesfond, and Dr. Ã…ke Olsson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Magalhaes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Magalhaes, I., Solders, M., Kaipe, H. (2020). MAIT Cells in Health and Disease. In: Kaipe, H., Magalhaes, I. (eds) MAIT Cells. Methods in Molecular Biology, vol 2098. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0207-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0207-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0206-5

  • Online ISBN: 978-1-0716-0207-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics