Skip to main content

Dextran Enhances the Lentiviral Transduction Efficiency of Murine and Human Primary NK Cells

  • Protocol
  • First Online:
Cell Reprogramming for Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2097))

Abstract

Recent advances in cancer immunotherapy emphasize the need for an efficient method to genetically modify effector lymphocytes to express exogenous “synthetic” genes. NK cells represent 10–20% of total lymphocytes in the peripheral blood of humans and play an essential role in clearing infections and malignant cells. A significant number of NK cells express and utilize non-clonotypic receptors that recognize cognate ligands expressed on a broad spectrum of target cells. Thus, NK cells can be utilized as potent immunotherapeutic tools with fewer limitations. Considerable amount of progress in improving effector functions through genetic manipulations has been centered around T cells. However, a similar technological and translational exploration on NK cells is lacking. One major constrain is the significantly low efficiency of lentiviral-mediated gene transductions into primary human or mouse NK cells. We found that dextran, a branched glucan polysaccharide, significantly improves the transduction efficiency of human and mouse primary NK cells. This highly reproducible methodology offers an approach that can help to improve gene delivery into NK cells and thereby cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510

    Article  CAS  PubMed  Google Scholar 

  2. Zitvogel L, Terme M, Borg C, Trinchieri G (2006) Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr Top Microbiol Immunol 298:157–174

    CAS  PubMed  Google Scholar 

  3. Abel AM, Yang C, Thakar MS, Malarkannan S (2018) Natural killer cells: development, maturation, and clinical utilization. Front Immunol 9:1869. https://doi.org/10.3389/fimmu.2018.01869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6(7):520–531

    Article  CAS  PubMed  Google Scholar 

  5. Schuster IS, Coudert JD, Andoniou CE, Degli-Esposti MA (2016) Natural regulators: NK cells as modulators of T cell immunity. Front Immunol 7:235. https://doi.org/10.3389/fimmu.2016.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Landoni E, Savoldo B (2018) Treating hematological malignancies with cell therapy: where are we now? Expert Opin Biol Ther 18(1):65–75. https://doi.org/10.1080/14712598.2018.1384810

    Article  PubMed  Google Scholar 

  7. Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, Gagea M, Banerjee P, Cai R, Bdaiwi MH, Basar R, Muftuoglu M, Li L, Marin D, Wierda W, Keating M, Champlin R, Shpall E, Rezvani K (2018) Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32(2):520–531. https://doi.org/10.1038/leu.2017.226

    Article  CAS  PubMed  Google Scholar 

  8. Rezvani K, Rouce R, Liu E, Shpall E (2017) Engineering natural killer cells for cancer immunotherapy. Mol Ther 25(8):1769–1781. https://doi.org/10.1016/j.ymthe.2017.06.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS (2017) Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front Immunol 8:533. https://doi.org/10.3389/fimmu.2017.00533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Regunathan J, Chen Y, Kutlesa S, Dai X, Bai L, Wen R, Wang D, Malarkannan S (2006) Differential and nonredundant roles of phospholipase Cgamma2 and phospholipase Cgamma1 in the terminal maturation of NK cells. J Immunol 177(8):5365–5376

    Article  CAS  PubMed  Google Scholar 

  11. Jiang K, Zhong B, Gilvary DL, Corliss BC, Vivier E, Hong-Geller E, Wei S, Djeu JY (2002) Syk regulation of phosphoinositide 3-kinase-dependent NK cell function. J Immunol 168(7):3155–3164

    Article  CAS  PubMed  Google Scholar 

  12. Maasho K, Marusina A, Reynolds NM, Coligan JE, Borrego F (2004) Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system. J Immunol Methods 284(1–2):133–140

    Article  CAS  PubMed  Google Scholar 

  13. Becknell B, Trotta R, Yu J, Ding W, Mao HC, Hughes T, Marburger T, Caligiuri MA (2005) Efficient infection of human natural killer cells with an EBV/retroviral hybrid vector. J Immunol Methods 296(1–2):115–123. https://doi.org/10.1016/j.jim.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  14. Simmons A, Alberola-Ila J (2016) Retroviral transduction of T cells and T cell precursors. Methods Mol Biol 1323:99–108. https://doi.org/10.1007/978-1-4939-2809-5_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Froelich S, Tai A, Wang P (2010) Lentiviral vectors for immune cells targeting. Immunopharmacol Immunotoxicol 32(2):208–218. https://doi.org/10.3109/08923970903420582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Denning W, Das S, Guo S, Xu J, Kappes JC, Hel Z (2013) Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations. Mol Biotechnol 53(3):308–314. https://doi.org/10.1007/s12033-012-9528-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajasekaran K, Kumar P, Schuldt KM, Peterson EJ, Vanhaesebroeck B, Dixit V, Thakar MS, Malarkannan S (2013) Signaling by Fyn-ADAP via the Carma1-Bcl-10-MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nat Immunol 14(11):1127–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding Support: We thank Lucia Sammarco and her Lulu’s Lemonade Stand for inspiration, motivation, and support. This work was supported in part by Ann’s Hope Melanoma Foundation (S.M. and M.S.T.); NIH R01 AI102893 (S.M.) and NCI R01 CA179363 (S.M. and M.S.T.); HRHM Program of MACC Fund/Children’s Hospital of Wisconsin (S.M.), Nicholas Family Foundation (S.M.); Gardetto Family (S.M.); MCW-Cancer Center-Large Seed Grant (S.M. & M.S.T.); and MACC Fund/Children’s Hospital of Wisconsin (M.S.T. and S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Malarkannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nanbakhsh, A., Malarkannan, S. (2020). Dextran Enhances the Lentiviral Transduction Efficiency of Murine and Human Primary NK Cells. In: Katz, S., Rabinovich, P. (eds) Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, vol 2097. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0203-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0203-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0202-7

  • Online ISBN: 978-1-0716-0203-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics