Skip to main content

Engineering of Natural Killer Cells for Clinical Application

  • Protocol
  • First Online:
Cell Reprogramming for Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2097))

Abstract

The clinical success of chimeric antigen receptor-directed T cells in leukemia and lymphoma has boosted the interest in cellular therapy of cancer. It has been known for nearly half a century that a subset of lymphocytes called natural killer (NK) cells can recognize and kill cancer cells, but their clinical potential as therapeutics has not yet been fully explored. Progress in methods to expand and genetically modify human NK cells has resulted in technologies that allow the production of large numbers of highly potent cells with specific anticancer activity. Here, we describe clinically applicable protocols for NK cell engineering, including expansion of NK cells and genetic modification using electroporation of messenger RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morvan MG, Lanier LL (2016) NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 16(1):7–19. https://doi.org/10.1038/nrc20155

    Article  CAS  PubMed  Google Scholar 

  2. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49. https://doi.org/10.1126/science1198687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guillerey C, Huntington ND, Smyth MJ (2016) Targeting natural killer cells in cancer immunotherapy. Nat Immunol 17(9):1025–1036. https://doi.org/10.1038/ni.3518

    Article  CAS  PubMed  Google Scholar 

  4. Martinet L, Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15(4):243–254. https://doi.org/10.1038/nri3799

    Article  CAS  PubMed  Google Scholar 

  5. Shimasaki N, Coustan-Smith E, Kamiya T, Campana D (2016) Expanded and armed natural killer cells for cancer treatment. Cytotherapy 18(11):1422–1434. https://doi.org/10.1016/j.jcyt.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  6. Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327. https://doi.org/10.1038/nri2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gwalani LA, Orange JS (2018) Single Degranulations in NK cells can mediate target cell killing. J Immunol 200(9):3231–3243. https://doi.org/10.4049/jimmunol.1701500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wallin RP, Screpanti V, Michaelsson J, Grandien A, Ljunggren HG (2003) Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol 33(10):2727–2735. https://doi.org/10.1002/eji.200324070

    Article  CAS  PubMed  Google Scholar 

  9. Miller JS (2013) Therapeutic applications: natural killer cells in the clinic. Hematology Am Soc Hematol Educ Program 2013:247–253. https://doi.org/10.1182/asheducation-2013.1.247

    Article  PubMed  Google Scholar 

  10. Alici E, Sutlu T, Bjorkstrand B, Gilljam M, Stellan B, Nahi H, Quezada HC, Gahrton G, Ljunggren HG, Dilber MS (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111(6):3155–3162. https://doi.org/10.1182/blood-2007-09-110312

    Article  CAS  PubMed  Google Scholar 

  11. Masuyama J, Murakami T, Iwamoto S, Fujita S (2016) Ex vivo expansion of natural killer cells from human peripheral blood mononuclear cells co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies. Cytotherapy 18(1):80–90. https://doi.org/10.1016/j.jcyt.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  12. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, Cooper MA, Fehniger TA (2012) Cytokine activation induces human memory-like NK cells. Blood 120(24):4751–4760. https://doi.org/10.1182/blood-2012-04-419283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siegler U, Meyer-Monard S, Jorger S, Stern M, Tichelli A, Gratwohl A, Wodnar-Filipowicz A, Kalberer CP (2010) Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. Cytotherapy 12(6):750–763. https://doi.org/10.3109/14653241003786155

    Article  CAS  PubMed  Google Scholar 

  14. Berg M, Lundqvist A, McCoy P Jr, Samsel L, Fan Y, Tawab A, Childs R (2009) Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 11(3):341–355. https://doi.org/10.1080/14653240902807034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T (2004) Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 24(3b):1861–1871

    PubMed  Google Scholar 

  16. Harada H, Watanabe S, Saijo K, Ishiwata I, Ohno T (2004) A Wilms tumor cell line, HFWT, can greatly stimulate proliferation of CD56+ human natural killer cells and their novel precursors in blood mononuclear cells. Exp Hematol 32(7):614–621. https://doi.org/10.1016/j.exphem.2004.03.011

    Article  PubMed  Google Scholar 

  17. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106(1):376–383

    Article  CAS  Google Scholar 

  18. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69(9):4010–4017

    Article  CAS  Google Scholar 

  19. Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, Dandekar V, Mei Z, Jackson K, Vera J, Ando J, Ngo MC, Coustan-Smith E, Campana D, Szmania S, Garg T, Moreno-Bost A, Vanrhee F, Gee AP, Rooney CM (2012) Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy 14(9):1131–1143. https://doi.org/10.3109/14653249.2012.700767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, Cui Y, Voong N, Sabatino M, Stroncek DF, Morisot S, Civin CI, Wayne AS, Levine BL, Mackall CL (2011) Activating signals dominate inhibitory signals in CD137L/IL-15 activated natural killer cells. J Immunother 34(2):187–195. https://doi.org/10.1097/CJI.0b013e31820d2a21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7(1):e30264. https://doi.org/10.1371/journal.pone.0030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szmania S, Lapteva N, Garg T, Greenway A, Lingo J, Nair B, Stone K, Woods E, Khan J, Stivers J, Panozzo S, Campana D, Bellamy WT, Robbins M, Epstein J, Yaccoby S, Waheed S, Gee A, Cottler-Fox M, Rooney C, Barlogie B, van Rhee F (2015) Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother 38(1):24–36. https://doi.org/10.1097/cji.0000000000000059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, Decker WK, Li S, Robinson SN, Sekine T, Parmar S, Gribben J, Wang M, Rezvani K, Yvon E, Najjar A, Burks J, Kaur I, Champlin RE, Bollard CM, Shpall EJ (2013) Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One 8(10):e76781. https://doi.org/10.1371/journal.pone.0076781

    Article  CAS  PubMed Central  Google Scholar 

  24. Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ, Lee DA, Kaufman DS (2013) Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2(4):274–283. https://doi.org/10.5966/sctm.2012-0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garg TK, Szmania SM, Khan JA, Hoering A, Malbrough PA, Moreno-Bost A, Greenway AD, Lingo JD, Li X, Yaccoby S, Suva LJ, Storrie B, Tricot G, Campana D, Shaughnessy JD Jr, Nair BP, Bellamy WT, Epstein J, Barlogie B, van Rhee F (2012) Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 97(9):1348–1356. https://doi.org/10.3324/haematol.2011.056747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho FN, Chang TH, Shu CW, Ko MC, Liao SK, Wu KH, Yu MS, Lin SJ, Hong YC, Chen CH, Hung CH, Chang YH (2014) Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis. PLoS One 9(10):e109352. https://doi.org/10.1371/journal.pone.0109352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamiya T, Chang YH, Campana D (2016) Expanded and activated natural killer cells for immunotherapy of hepatocellular carcinoma. Cancer Immunol Res 4(7):574–581. https://doi.org/10.1158/2326-6066CIR-15-0229

    Article  CAS  PubMed  Google Scholar 

  28. Mimura K, Kamiya T, Shiraishi K, Kua LF, Shabbir A, So J, Yong WP, Suzuki Y, Yoshimoto Y, Nakano T, Fujii H, Campana D, Kono K (2014) Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer. Int J Cancer 135(6):1390–1398. https://doi.org/10.1002/ijc.28780

    Article  CAS  PubMed  Google Scholar 

  29. Kruschinski A, Moosmann A, Poschke I, Norell H, Chmielewski M, Seliger B, Kiessling R, Blankenstein T, Abken H, Charo J (2008) Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc Natl Acad Sci U S A 105(45):17481–17486. https://doi.org/10.1073/pnas.0804788105

    Article  PubMed  PubMed Central  Google Scholar 

  30. Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, Campana D, Juergens H, Pule M, Rossig C (2009) 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res 15(15):4857–4866. https://doi.org/10.1158/1078-0432.ccr-08-2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimasaki N, Fujisaki H, Cho D, Masselli M, Lockey T, Eldridge P, Leung W, Campana D (2012) A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy 14(7):830–840. https://doi.org/10.3109/14653249.2012.671519

    Article  CAS  PubMed  Google Scholar 

  32. Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, Gagea M, Banerjee P, Cai R, Bdaiwi MH, Basar R, Muftuoglu M, Li L, Marin D, Wierda W, Keating M, Champlin R, Shpall E, Rezvani K (2018) Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32(2):520–531. https://doi.org/10.1038/leu.2017.226

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Hermanson DL, Moriarity BS, Kaufman DS (2018) Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23(2):181–192. https://doi.org/10.1016/j.stem.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D (2013) A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 73(6):1777–1786. https://doi.org/10.1158/0008-5472CAN-12-3558

    Article  CAS  PubMed  Google Scholar 

  35. Imamura M, Shook D, Kamiya T, Shimasaki N, Chai SM, Coustan-Smith E, Imai C, Campana D (2014) Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood 124(7):1081–1088. https://doi.org/10.1182/blood-2014-02-556837

    Article  CAS  PubMed  Google Scholar 

  36. Shimasaki N, Campana D (2013) Natural killer cell reprogramming with chimeric immune receptors. Methods Mol Biol 969:203–220. https://doi.org/10.1007/978-1-62703-260-5_13

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Liu LN, Feller S, Allen C, Shivakumar R, Fratantoni J, Wolfraim LA, Fujisaki H, Campana D, Chopas N, Dzekunov S, Peshwa M (2010) Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther 17(3):147–154. https://doi.org/10.1038/cgt200961

    Article  CAS  PubMed  Google Scholar 

  38. Regis S, Caliendo F, Dondero A, Casu B, Romano F, Loiacono F, Moretta A, Bottino C, Castriconi R (2017) TGF-beta1 Downregulates the expression of CX3CR1 by inducing miR-27a-5p in primary human NK cells. Front Immunol 8:868. https://doi.org/10.3389/fimmu.2017.00868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Somanchi SS, Somanchi A, Cooper LJ, Lee DA (2012) Engineering lymph node homing of ex vivo-expanded human natural killer cells via trogocytosis of the chemokine receptor CCR7. Blood 119(22):5164–5172. https://doi.org/10.1182/blood-2011-11-389924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hank JA, Surfus J, Gan J, Albertini M, Lindstrom M, Schiller JH, Hotton KM, Khorsand M, Sondel PM (1999) Distinct clinical and laboratory activity of two recombinant interleukin-2 preparations. Clin Cancer Res 5(2):281–289

    CAS  PubMed  Google Scholar 

  41. Hamelik RM, Krishan A (2009) Click-iT assay with improved DNA distribution histograms. Cytometry A 75(10):862–865. https://doi.org/10.1002/cytoa20780

    Article  PubMed  Google Scholar 

  42. Muller S, Schulz A, Reiss U, Schwarz K, Schreiner T, Wiesneth M, Debatin KM, Friedrich W (1999) Definition of a critical T cell threshold for prevention of GVHD after HLA non-identical PBPC transplantation in children. Bone Marrow Transplant 24(6):575–581. https://doi.org/10.1038/sj.bmt.1701970

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant NMRC/STaR/0025/2015a from the National Medical Research Council of Singapore.

Conflict of Interest Statement: NS and DC are coinventors in patent applications describing some of the technologies used or related technologies. DC is scientific founder and stockholder of Nkarta Therapeutics, which holds the license for some of the technologies described.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Shimasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shimasaki, N., Campana, D. (2020). Engineering of Natural Killer Cells for Clinical Application. In: Katz, S., Rabinovich, P. (eds) Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, vol 2097. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0203-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0203-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0202-7

  • Online ISBN: 978-1-0716-0203-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics