Skip to main content

Genome-Wide CRISPRi/a Screening in an In Vitro Coculture Assay of Human Immune Cells with Tumor Cells

  • Protocol
  • First Online:
Cell Reprogramming for Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2097))

Abstract

Cell-based immunotherapy has achieved preclinical success in certain types of cancer patients, with a few approved cell-based products for clinical use. These achievements revitalized the field of cell engineering/ immunotherapy and brought attention to the opportunities that cell-based immunotherapeutics can offer to patients. On the other hand, obvious indications emphasize the need for a better understanding of the biological mechanisms involved in the immune response. This knowledge may not only ameliorate safety and efficacy, but also determine the possibilities and limitations in use of immune cell engineering for cancer treatment, and facilitate developing novel immunotherapeutic strategies. Recently developed technology based on CRISPR-dCas9 has an immense potential to systematically uncover genetic mechanisms by identifying subsets of essential genes involved in interactions of cancer cells with the immune system. This chapter will present a reliable and reproducible general protocol for the application of genome-wide sgRNA gene-editing tools in the recently established two-cell type co-culture, consisting of immune cells as effectors and cancer cells as targets, utilizing CRISPRi/a-dCas9-based technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kampmann M (2018) CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol 13(2):406–416

    Article  CAS  Google Scholar 

  2. Cyranoski D (2016) CRISPR gene-editing tested in a person for the first time. Nature 539(7630):479

    Article  CAS  Google Scholar 

  3. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1911

    Article  Google Scholar 

  4. Yang X, Boehm JS, Salehi-Ashtiani K, Hao T, Shen Y, Lubonja R, Thomas SR, Alkan O, Bhimdi T, Green TM et al (2011) A public genome-scale lentiviral expression library of human ORFs. Nat Methods 8(8):659–661

    Article  CAS  Google Scholar 

  5. Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I, Godarova A, Kotecki M, Cochran BH, Spooner E, Ploegh HL et al (2009) Haploid genetic screens in human cells identify host factors used by pathogens. Science 326(5957):1231–1235

    Article  CAS  Google Scholar 

  6. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267–273

    Article  CAS  Google Scholar 

  7. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  Google Scholar 

  8. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC et al (2014) Genome-Scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661

    Article  CAS  Google Scholar 

  9. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, E PRI, Lin S, Kiani S, Guzman CD, Wiegand DJ et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328

    Article  CAS  Google Scholar 

  10. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588

    Article  CAS  Google Scholar 

  11. Li YH, Lin TP, Chang CL, Ch SK, Tsai SM, Mai TM (1961) Bilateral familial pheochromocytoma. Zhonghua Wai Ke Za Zhi 9:349–352

    CAS  PubMed  Google Scholar 

  12. Abdulkadir SA, Casolaro V, Tai AK, Thanos D, Ono SJ (1998) High mobility group I/Y protein functions as a specific cofactor for Oct-2A: mapping of interaction domains. J Leukoc Biol 64(5):681–691

    Article  CAS  Google Scholar 

  13. Smith RE, Strieter RM, Phan SH, Lukacs N, Kunkel SL (1998) TNF and IL-6 mediate MIP-1alpha expression in bleomycin-induced lung injury. J Leukoc Biol 64(4):528–536

    Article  CAS  Google Scholar 

  14. Lanza AM, Kim DS, Alper HS (2013) Evaluating the influence of selection markers on obtaining selected pools and stable cell lines in human cells. Biotechnol J 8(7):811–821

    Article  CAS  Google Scholar 

  15. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838

    Article  CAS  Google Scholar 

  16. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009 May) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jonathan Weissman at UCSF for providing research materials and expert advice. This work was supported by the Yale Cancer Center, NIH R21CA198561, NIH R21AI121993, and the Alliance for Cancer Gene Therapy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel G. Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, J., Späth, S.S., Katz, S.G. (2020). Genome-Wide CRISPRi/a Screening in an In Vitro Coculture Assay of Human Immune Cells with Tumor Cells. In: Katz, S., Rabinovich, P. (eds) Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, vol 2097. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0203-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0203-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0202-7

  • Online ISBN: 978-1-0716-0203-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics