Skip to main content

Measuring Biomass-Derived Products in Biological Conversion and Metabolic Process

  • Protocol
  • First Online:
Metabolic Pathway Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2096))

Abstract

Biomass can be converted to various types of products in biological and metabolic processes. For an in-depth understanding of biomass conversion, quantitative and qualitative information of products in these conversion processes are essential. Here we introduce analytical techniques including high-performance liquid chromatography (HPLC), gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) for biomass-based products characterization in biological and metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DuBois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    CAS  Google Scholar 

  2. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69–72

    CAS  PubMed  Google Scholar 

  3. Ohemeng-Ntiamoah J, Datta T (2018) Evaluating analytical methods for the characterization of lipids, proteins and carbohydrates in organic substrates for anaerobic co-digestion. Bioresour Technol 247:697–704

    CAS  PubMed  Google Scholar 

  4. Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6(8):3937–3950

    CAS  Google Scholar 

  5. Irick T, West K, Brownell H, Schwald W, Saddler J (1988) Comparison of colorimetric and HPLC techniques for quantitating the carbohydrate components of steam-treated wood. Appl Biochem Biotechnol 17(1-3):137–149

    CAS  Google Scholar 

  6. Schwald W, Chan M, Breuil C, Saddler J (1988) Comparison of HPLC and colorimetric methods for measuring cellulolytic activity. Appl Microbiol Biotechnol 28(4):398–403

    CAS  Google Scholar 

  7. Thangavelu SK, Ahmed AS, Ani FN (2016) Review on bioethanol as alternative fuel for spark ignition engines. Renew Sust Energ Rev 56:820–835

    CAS  Google Scholar 

  8. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469

    CAS  PubMed  Google Scholar 

  9. Thang VH, Kanda K, Kobayashi G (2010) Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 161(1–8):157–170

    CAS  PubMed  Google Scholar 

  10. Tirado-Acevedo O, Chinn MS, Grunden AM (2010) Production of biofuels from synthesis gas using microbial catalysts. In: Advances in applied microbiology, vol 70. Elsevier, Amsterdam, pp 57–92

    Google Scholar 

  11. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228

    CAS  PubMed  Google Scholar 

  12. Sreekumar S, Baer ZC, Pazhamalai A, Gunbas G, Grippo A, Blanch HW, Clark DS, Toste FD (2015) Production of an acetone-butanol-ethanol mixture from clostridium acetobutylicum and its conversion to high-value biofuels. Nat Protoc 10(3):528

    CAS  PubMed  Google Scholar 

  13. Pi M-A, Simakova IL, Salmi T, Murzin DY (2013) Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem Rev 114(3):1909–1971

    Google Scholar 

  14. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534

    CAS  PubMed  Google Scholar 

  15. Stoklosa R, Johnston D, Nghiem N (2018) Utilization of sweet sorghum juice for the production of Astaxanthin as a biorefinery co-product by Phaffia rhodozyma. ACS Sustain Chem Eng 6

    Google Scholar 

  16. Nghiem NP, Kim TH, Yoo CG, Hicks KB (2013) Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product. Appl Biochem Biotechnol 171(2):341–351

    CAS  PubMed  Google Scholar 

  17. Ambati RR, Phang S-M, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12(1):128–152

    PubMed  PubMed Central  Google Scholar 

  18. Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Le RK, Das P, Mahan KM, Anderson SA, Wells T, Yuan JS, Ragauskas AJ (2017) Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express 7(1):185

    PubMed  PubMed Central  Google Scholar 

  20. Kumar M, Saini S, Gayen K (2014) Acetone-butanol-ethanol fermentation analysis using only high performance liquid chromatography. Anal Methods 6(3):774–781

    CAS  Google Scholar 

  21. Oshiro M, Hanada K, Tashiro Y, Sonomoto K (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 87(3):1177–1185

    CAS  PubMed  Google Scholar 

  22. Swidah R, Wang H, Reid P, Ahmed H, Pisanelli A, Persaud K, Grant C, Ashe M (2015) Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnol Biofuels 8(1):97

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Carrieri D, McNeely K, De Roo AC, Bennette N, Pelczer I, Dismukes GC (2009) Identification and quantification of water-soluble metabolites by cryoprobe-assisted nuclear magnetic resonance spectroscopy applied to microbial fermentation. Magn Reson Chem 47(S1):S138–S146

    CAS  PubMed  Google Scholar 

  24. Resch M, Baker J, Decker S (2015) Low solids enzymatic saccharification of lignocellulosic biomass. In: Laboratory analytical procedure (LAP) (NREL/TP-5100-63351). National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  25. Harde S, Wang Z, Horne M, Zhu J, Pan X (2016) Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina. Fuel 175:64–74

    CAS  Google Scholar 

  26. Kim TH, Yoo CG, Lamsal B (2013) Front-end recovery of protein from lignocellulosic biomass and its effects on chemical pretreatment and enzymatic saccharification. Bioprocess Biosyst Eng 36(6):687–694

    CAS  PubMed  Google Scholar 

  27. Nichols NN, Sharma LN, Mowery RA, Chambliss CK, Van Walsum GP, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn Stover dilute acid hydrolysate. Enzym Microb Technol 42(7):624–630

    CAS  Google Scholar 

Download references

Acknowledgments

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This study was supported and performed as part of the BioEnergy Science Center (BESC) and the Center for Bioenergy Innovation (CBI). The BESC and CBI are U.S Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the U. S. Government or any agency thereof. Neither the U. S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Geun Yoo or Arthur J. Ragauskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yoo, C.G., Pu, Y., Ragauskas, A.J. (2020). Measuring Biomass-Derived Products in Biological Conversion and Metabolic Process. In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering. Methods in Molecular Biology, vol 2096. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0195-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0195-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0194-5

  • Online ISBN: 978-1-0716-0195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics