Skip to main content

Gene Editing Technologies for Biofuel Production in Thermophilic Microbes

Part of the Methods in Molecular Biology book series (MIMB,volume 2096)

Abstract

Thermophilic microbes are an attractive bioproduction platform due to their inherently lower contamination risk and their ability to perform thermostable enzymatic processes which may be required for biomass processing and other industrial applications. The engineering of microbes for industrial scale processes requires a suite of genetic engineering tools to optimize existing biological systems as well as to design and incorporate new metabolic pathways within strains. Yet, such tools are often lacking and/or inadequate for novel microbes, especially thermophiles. This chapter focuses on genetic tool development and engineering strategies, in addition to challenges, for thermophilic microbes. We provide detailed instructions and techniques for tool development for an anaerobic thermophile, Caldanaerobacter subterraneus subsp. tengcongensis, including culturing, plasmid construction, transformation, and selection. This establishes a foundation for advanced genetic tool development necessary for the metabolic engineering of this microbe and potentially other thermophilic organisms.

Key words

  • Genetic engineering
  • Genetic tools
  • Transformation
  • Biofuel
  • Thermophile
  • Caldanaerobacter subterraneus subsp. tengcongensis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0195-2_12
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0195-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9

    Google Scholar 

  2. Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    PubMed  PubMed Central  Google Scholar 

  3. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lin L, Xu J (2013) Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol Adv 31:827–837

    CAS  PubMed  Google Scholar 

  5. Olson DG, Sparling R, Lynd LR (2015) Ethanol production by engineered thermophiles. Curr Opin Biotechnol 33:130–141

    CAS  PubMed  Google Scholar 

  6. Schweitzer HP (2008) Bacterial genetics: past achievements, present state of the field, and future challenges. BioTechniques 44:633–641

    Google Scholar 

  7. Liu B, Zhou F, Wu S, Xu Y, Zhang X (2009) Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1. Res Microbiol 160:166–171

    CAS  PubMed  Google Scholar 

  8. Nagayoshi Y, Kumagae K, Mori K, Tashiro K, Nakamura A, Fujino Y, Hiromasa Y, Iwamoto T, Kuhara S, Ohshima T, Doi K (2016) Physiological properties and genome structure of the hyperthermophilic filamentous phage φOH3 which infects Thermus thermophilus HB8. Front Microbiol 7:50

    PubMed  PubMed Central  Google Scholar 

  9. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr, Scott RA, Adams MW, Westpheling J (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77:2232–2238

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu B, Wang C, Yang H, Tan H (2012) Establishment of a genetic transformation system and its application in Thermoanaerobacter tengcongensis. J Genet Genomics 39:561–570

    CAS  PubMed  Google Scholar 

  12. Shaw AJ, Hogsett DA, Lynd LR (2010) Natural competence in Thermoanaerobacter and Thermoanaerbacterium species. Appl Environ Microbiol 76:4713–4719

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cesar CE, Alvarez L, Bricio C, van Heerden E, Littauer D, Berenguer J (2011) Unconventional lateral gene transfer in extreme thermophilic bacteria. Int Microbiol 14:187–199

    CAS  PubMed  Google Scholar 

  14. Wahlund TM, Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177:2583–2588

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kita A, Iwasaki Y, Sakai S, Okuto S, Takaoka K, Suzuki T, Yano S, Sawayama S, Tajima T, Kato J, Nishio N, Murakami K, Nakashimada Y (2013) Development of gentic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J Biosci Bioeng 115:347–352

    CAS  PubMed  Google Scholar 

  16. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor B, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408

    CAS  PubMed  Google Scholar 

  17. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guss AM, Olson DG, Caiazza NC, Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in clostridium thermocellum. Biotechnol Biofuels 5:30

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsukahara K, Kita A, Nakashimada Y, Hoshino T, Murakami K (2014) Genome-guided analysis of transformation efficiency and carbon dioxide assimilation by Moorella thermoacetica Y72. Gene 535:150–155

    CAS  PubMed  Google Scholar 

  20. Liao H, McKenzie T, Hageman R (1986) Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A 83:576–580

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Taylor MP, Esteban CD, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60:45–52

    CAS  PubMed  Google Scholar 

  22. Brouns SJJ, Wu H, Akerboom J, Turnbull AP, de Vos WM, van der Oost J (2005) Engineering a selectable marker for Hyperthermophiles. J Biol Chem 280:11422–11431

    CAS  PubMed  Google Scholar 

  23. Atomi H, Imanaka T, Fukui T (2012) Overview of the genetic tools in the Archaea. Front Microbiol 3:337

    PubMed  PubMed Central  Google Scholar 

  24. Averhoff B (2006) Genetic systems for Thermus. In: Rainey F, Oren A (eds) Extremophiles (methods in microbiology), vol 35. Oxford Academic Press, Oxford, pp 279–308

    Google Scholar 

  25. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barret TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bosma EF, van de Weijer AHP, van der Vlist L, de Vos WM, van der Oost J, van Kranenburg R (2015) Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains. Microb Cell Factories 20:99

    Google Scholar 

  27. Friedrich A, Hartsch T, Averhoff B (2001) Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67:3140–3148

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Muschiol S, Balaban M, Normark S, Henriques-Normark B (2015) Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. BioEssays 37:426–435

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Z, Liang Y, Ang EL, Zhao H (2017) A new era of genome integration—simply cut and paste! ACS Synth Biol 6:601–609

    CAS  PubMed  Google Scholar 

  30. Harrington LB, Paez-Espino D, Staahl BT, Chen JS, Ma E, Kyrpides NC, Doudna JA (2017) A thermostable Cas9 with increased lifetime in human plasma. Nat Commun 8:1424

    PubMed  PubMed Central  Google Scholar 

  31. Mougiakos I, Mohanraju P, Bosma EF, Vrouwe V, Finger Bou M, Naduthodi MIS, Gussak A, Brinkman RBL, van Kranenberg R, van der Oost J (2017) Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun 8:1647

    PubMed  PubMed Central  Google Scholar 

  32. Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, Olson DG, Eckert CA (2020) Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Met Eng Comm 10:e00116

    Google Scholar 

  33. Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int J Syst Evol Microbiol 51:1335–1341

    CAS  PubMed  Google Scholar 

  34. Sant’Anna FH, Lebedinsky AV, Sokolova TG, Robb FT, Gonzalez JM (2015) Analysis of three genomes within the thermophilic bacterial species Caldanaerobacter subterraneous with a focus on carbon monoxide dehydrogenase evolution and hydrolase diversity. BMC Genomics 16:757

    PubMed  PubMed Central  Google Scholar 

  35. Abokitse K, Wu M, Bergeron H, Grosse S, Lau PCK (2010) Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Appl Microbiol Biotechnol 87:195–203

    CAS  PubMed  Google Scholar 

  36. Grosse S, Bergeron H, Imura A, Boyd J, Wang S, Kubota K, Miyadera A, Sulea T, Lau PC (2010) Nature versus nurture in two highly enantioselective esterases from Bacillus cereus and Thermoanaerobacter tengcongensis. Microb Biotechnol 3:65–73

    CAS  PubMed  Google Scholar 

  37. Moriyoshi K, Koma D, Yamanaka H, Sakai K, Ohmoto T (2013) Expression and characterization of a thermostable acetylxylan esterase from Caldanaerobacter subterraneous subsp. tengcongensis involved in the degradation of insoluble cellulose acetate. Bioscience. Biotechnol Biochem 77:2495–2498

    CAS  Google Scholar 

  38. Rao L, Xue Y, Zhou C, Tao J, Li G, Lu JR, May Y (2011) A thermostable esterase from Thermoanaerobacter tengcongesis opening up a new family of bacterial lipolytic enzymes. Biochim Biophys Acta 1814:1695–1702

    CAS  PubMed  Google Scholar 

  39. Royter M, Schmidt M, Elend C, Hobenreich H, Schafer T, Bornscheuer UT, Antranikan G (2009) Thermostable lipases from the extreme anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneous subsp. tengcongensis. Extremophiles 13:769–783

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Liu J, Zhou J, Ren Y, Dai X, Xiang H (2003) Thermostable esterase from Thermoanaerobacter tengcongensis: high-level expression, purification and characterization. Biotechnol Lett 25:1463–1467

    CAS  PubMed  Google Scholar 

  41. Zheng Y, Xue Y, Zhang Y, Zhou C, Schwaneberg U, Ma Y (2010) Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 87:225–233

    CAS  PubMed  Google Scholar 

  42. Fardeau ML, Bonilla Salinas M, L’Haridon S, Jeanthon C, Verhe F, Cayol JL, Patel BK, Garcia JL, Olliver B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibcrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474

    CAS  PubMed  Google Scholar 

  43. SGI DNA Archetype [computer software]. SGI DNA, La Jolla, CA

    Google Scholar 

  44. Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, Hauppauge, New York, pp 61–78

    Google Scholar 

  45. de Grado M, Castan P, Berenguer J (1999) A high-transformation-efficiency cloning vector for Thermus thermophilus. Plasmid 42:241–245

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. This work was authored in part by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the chapter do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Smolinski, S., Freed, E., Eckert, C. (2020). Gene Editing Technologies for Biofuel Production in Thermophilic Microbes. In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering. Methods in Molecular Biology, vol 2096. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0195-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0195-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0194-5

  • Online ISBN: 978-1-0716-0195-2

  • eBook Packages: Springer Protocols