Skip to main content

Crystallography of Metabolic Enzymes

  • Protocol
  • First Online:
Metabolic Pathway Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2096))

Abstract

The metabolic enzymes like any enzymes generally display globular architecture where secondary structure elements and interactions between them preserve the spatial organization of the protein. A typical enzyme features a well-defined active site, designed for selective binding of the reaction substrate and facilitating a chemical reaction converting the substrate into a product. While many chemical reactions could be facilitated using only the functional groups that are found in proteins, the large percentage or intracellular reactions require use of cofactors, varying from single metal ions to relatively large molecules like numerous coenzymes, nucleotides and their derivatives, dinucleotides or hemes. Quite often these large cofactors become important not only for the catalytic function of the enzyme but also for the structural stability of it, as those are buried deep in the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conrado RJ, Varner JD, DeLisa MP (2008) Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr Opin Biotechnol 19(5):492–499

    CAS  PubMed  Google Scholar 

  2. Kao HP, Abney JR, Verkman AS (1993) Determinants of the translational mobility of a small solute in cell cytoplasm. J Cell Biol 120(1):175

    CAS  PubMed  Google Scholar 

  3. Arrio-Dupont M et al (2000) Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells. Biophys J 78(2):901–907

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Meynial Salles I et al (2007) Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng 9(2):152–159

    CAS  PubMed  Google Scholar 

  5. Toyama BH, Hetzer MW (2012) Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell Biol 14:55

    Google Scholar 

  6. Eden E et al (2011) Proteome half-life dynamics in living human cells. Science 331(6018):764

    CAS  PubMed  Google Scholar 

  7. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  8. Tokmakov AA et al (2012) Multiple post-translational modifications affect heterologous protein synthesis. J Biol Chem 287(32):27106–27116

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brown CW et al (2017) Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genomics 18(1):301

    PubMed  PubMed Central  Google Scholar 

  10. Makino T, Skretas G, Georgiou G (2011) Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Factories 10:32

    CAS  Google Scholar 

  11. Zemella A et al (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. Chembiochem 16(17):2420–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Geisse S et al (1996) Eukaryotic expression systems: a comparison. Protein Expr Purif 8(3):271–282

    CAS  PubMed  Google Scholar 

  13. Eckart MR, Bussineau CM (1996) Quality and authenticity of heterologous proteins synthesized in yeast. Curr Opin Biotechnol 7(5):525–530

    CAS  PubMed  Google Scholar 

  14. Madin K et al (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci U S A 97(2):559–564

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ezure T et al (2006) Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol Prog 22(6):1570–1577

    CAS  PubMed  Google Scholar 

  16. Merrick WC, Barth-Baus D (2007) Use of reticulocyte lysates for mechanistic studies of eukaryotic translation initiation. Methods Enzymol 429:1–21

    CAS  PubMed  Google Scholar 

  17. Mikami S et al (2006) An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr Purif 46(2):348–357

    CAS  PubMed  Google Scholar 

  18. Mikami S et al (2006) A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins. J Biotechnol 127(1):65–78

    CAS  PubMed  Google Scholar 

  19. Hochuli E et al (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6:1321

    CAS  Google Scholar 

  20. Schmidt TG, Skerra A (2007) The strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2(6):1528–1535

    CAS  PubMed  Google Scholar 

  21. Giege R (2013) A historical perspective on protein crystallization from 1840 to the present day. FEBS J 280(24):6456–6497

    CAS  PubMed  Google Scholar 

  22. Hünefeld FL (1840) Der Chemismus in der thierischen Organisation: physiologisch-chemische Untersuchungen der materiellen Veränderungen oder des Bildungslebens im thierischen Organismus, insbesondere des Blutbildungsprocesses, der Natur der Blutkörperchen und ihrer Kernchen: ein Beitrag zur Physiologie und Heilmittellehre, Leipzig

    Google Scholar 

  23. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70(Pt 1):2–20

    CAS  PubMed  Google Scholar 

  24. Kim Y et al (2011) High-throughput protein purification and quality assessment for crystallization. Methods 55(1):12–28

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Structural Genomics Consortium et al (2008) Protein production and purification. Nat Methods 5(2):135–146

    PubMed Central  Google Scholar 

  26. Chayen NE et al (1990) An automated system for micro-batch protein crystallization and screening. J Appl Crystallogr 23(4):297–302

    CAS  Google Scholar 

  27. Cox MJ, Weber PC (1987) Experiments with automated protein crystallization. J Appl Crystallogr 20(5):366–373

    CAS  Google Scholar 

  28. Jancarik J, Kim S-H (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J Appl Crystallogr 24(4):409–411

    CAS  Google Scholar 

  29. Weber PC (1990) A protein crystallization strategy using automated grid searches on successively finer grids. Methods 1(1):31–37

    CAS  Google Scholar 

  30. Bergfors T (2003) Seeds to crystals. J Struct Biol 142(1):66–76

    CAS  PubMed  Google Scholar 

  31. Thaller C et al (1985) Diffraction methods for biological macromolecules. Seed enlargement and repeated seeding. Methods Enzymol 114:132–135

    CAS  PubMed  Google Scholar 

  32. D'Arcy A, Villard F, Marsh M (2007) An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr D Biol Crystallogr 63(Pt 4):550–554

    CAS  PubMed  Google Scholar 

  33. D'Arcy A et al (2003) The advantages of using a modified microbatch method for rapid screening of protein crystallization conditions. Acta Crystallogr D Biol Crystallogr 59(Pt 2):396–399

    PubMed  Google Scholar 

  34. Chayen NE (1998) Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques. Acta Crystallogr D Biol Crystallogr 54(Pt 1):8–15

    CAS  PubMed  Google Scholar 

  35. Zhang L et al (2014) A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl Microbiol Biotechnol 98(3):1175–1184

    CAS  PubMed  Google Scholar 

  36. Zhang X et al (2014) Two-stage pH control strategy based on the pH preference of Acetoin Reductase regulates Acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One 9(3):e91187

    PubMed  PubMed Central  Google Scholar 

  37. Jörnvall H et al (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34(18):6003–6013

    PubMed  Google Scholar 

  38. Otagiri M et al (2001) Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with NAD+ and inhibitor Mercaptoethanol at 1.7 a resolution for understanding of chiral substrate recognition Mechanisms1. J Biochem 129(2):205–208

    CAS  PubMed  Google Scholar 

  39. Otagiri M et al (2010) Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Lett 584(1):219–223

    CAS  PubMed  Google Scholar 

  40. Ui S et al (1998) Cloning, expression and nucleotide sequence of the l-2,3-butanediol dehydrogenase gene from Brevibacterium saccharolyticum C-1012. J Ferment Bioeng 86(3):290–295

    CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the BioEnergy Science Center (BESC) and the Center for Bioenergy Innovation (CBI), from the U.S. Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was authored in part by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the chapter do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the chapter for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Alahuhta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alahuhta, M., Himmel, M.E., Bomble, Y.J., Lunin, V.V. (2020). Crystallography of Metabolic Enzymes. In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering. Methods in Molecular Biology, vol 2096. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0195-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0195-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0194-5

  • Online ISBN: 978-1-0716-0195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics