Advertisement

HEK293 Cell-Based Bioprocess Development at Bench Scale by Means of Online Monitoring in Shake Flasks (RAMOS and SFR)

  • Tibor Anderlei
  • Michael V. Keebler
  • Jordi Joan Cairó
  • Martí LecinaEmail author
Protocol
  • 681 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2095)

Abstract

The platforms for bioprocess development have been developed in parallel to the needs of the manufacturing industry of biopharmaceuticals, aiming to ensure the quality and safety of their products. In this sense, Quality by Design (QbD) and Process Analytical Technology (PAT) have become the pillars for quality control and quality assurance.

A new combination of Shake Flask Reader (SFR) and Respiration Activity Monitoring System for online determination of OTR and CTR (RAMOS) allows online monitoring of main culture parameters needed for bioprocess development (pH, pO2, OTR, CTR, and QR) as presented below. Eventually, a case study of the application of the combination of SFR-RAMOS system is presented. The case study discloses the optimization of HEK293 cells cultures through the manipulation of their metabolic behavior.

Key words

Ramos SFR OTR Bioprocess optimization HEK293 cells Culture monitoring Glucose and lactate co-consumption Metabolic phases 

References

  1. 1.
    Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291CrossRefGoogle Scholar
  2. 2.
    Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398CrossRefGoogle Scholar
  3. 3.
    Moreira A (2007) The evolution of protein expression and cell culture. BioPharm Int 20:10Google Scholar
  4. 4.
    Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112CrossRefGoogle Scholar
  5. 5.
    Dumont J, Euwart D, Mei B et al (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122CrossRefGoogle Scholar
  6. 6.
    Román R, Miret J, Scalia F, Casablancas A, Lecina M, Cairó JJ (2016) Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide. J Biotechnol 239:57–60CrossRefGoogle Scholar
  7. 7.
    Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930CrossRefGoogle Scholar
  8. 8.
    Liste-Calleja L, Lecina M, Cairó JJ (2014) HEK293 cell culture media study towards bioprocess optimization: animal derived component free and animal derived component containing platforms. J Biosci Bioeng 117:471–477CrossRefGoogle Scholar
  9. 9.
    Delenda C, Chillon M, Douar AM, Merten OW (2007) Cells for gene therapy and vector production. In: Pörtner R (ed) Animal cell biotechnology, Methods in biotechnology, vol 24. Humana Press, Totowa, NJCrossRefGoogle Scholar
  10. 10.
    Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707CrossRefGoogle Scholar
  11. 11.
    Hassell T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture. Appl Biochem Biotechnol 30:29–41CrossRefGoogle Scholar
  12. 12.
    Gagnon M, Hiller G, Luan Y-T et al (2011) High-End pH controlled delivery of glucose effectively suppresses lactate accumulation in CHO Fed-batch cultures. Biotechnol Bioeng 108:1328–1337CrossRefGoogle Scholar
  13. 13.
    Martínez VS, Dietmair S, Quek L-E et al (2013) Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol Bioeng 110:660–666CrossRefGoogle Scholar
  14. 14.
    Liste-Calleja L, Lecina M, Lopez-Repullo J et al (2015) Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures. Appl Microbiol Biotechnol 99:9951–9960CrossRefGoogle Scholar
  15. 15.
    Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299CrossRefGoogle Scholar
  16. 16.
    San Martín A, Ceballo S, Ruminot I et al (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8(2):e57712CrossRefGoogle Scholar
  17. 17.
    Martínez-Monge I, Albiol J, Lecina M et al (2019) Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures. Biotechnol Bioeng 116:388–404.  https://doi.org/10.1002/bit.26858CrossRefPubMedGoogle Scholar
  18. 18.
    Yu LX, Amidon G, Khan MA et al (2014) Understanding pharmaceutical quality by design. AAPS J 16:771–783CrossRefGoogle Scholar
  19. 19.
    Rathore AS, Bhambure R, Ghare V (2010) Process analytical technology PAT for biopharmaceutical products. Anal Bioanal Chem 398:137–154CrossRefGoogle Scholar
  20. 20.
    Zhao L, Fu H-Y, Zhou W et al (2015) Advances in process monitoring tools for cell culture bioprocesses. Eng Life Sci 15:459–468CrossRefGoogle Scholar
  21. 21.
    Junker BH, Reddy J, Gbewonyo K et al (1994) On-line and in-situ monitoring technology for cell density measurement in microbial and animal cell cultures. Bioprocess Eng 10:195–207CrossRefGoogle Scholar
  22. 22.
    Höpfner T, Bluma A, Rudolph G et al (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33:247–256CrossRefGoogle Scholar
  23. 23.
    Ruffieux PA, von Stockar U, Marison IW (1998) Measurement of volumetric (OUR) and determination of specific (qO2) oxygen uptake rates in animal cell cultures. J Biotechnol 63:85–95CrossRefGoogle Scholar
  24. 24.
    Casablancas A, Gámez X et al (2013) Comparison of control strategies for fed-batch culture of hybridoma cells based on on-line monitoring of oxygen uptake rate, optical cell density and glucose concentration. J Chem Technol Biotechnol 88:1680–1689CrossRefGoogle Scholar
  25. 25.
    Sauer PW, Burky JE, Wesson MC et al (2000) A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 67:585–597CrossRefGoogle Scholar
  26. 26.
    Gálvez J, Lecina M, Solà C et al (2012) Optimization of HEK-293S cell cultures for the production of adenoviral vectors in bioreactors using on-line OUR measurements. J Biotechnol 157:214–222CrossRefGoogle Scholar
  27. 27.
    Anderlei T, Zang W, Papaspyrou M, Buechs J (2004) Online respiration activity measurement OTR, CTR, RQ in shake flasks. Biochem Eng J 17:187194CrossRefGoogle Scholar
  28. 28.
    Fontova A, Lecina M, López-Repullo J et al (2018) A simplified implementation of the stationary liquid mass balance method for on-line OUR monitoring in animal cell cultures. J Chem Technol Biotechnol 93:1757–1766CrossRefGoogle Scholar
  29. 29.
    Lecina M, Soley A, Gràcia J et al (2006) Application of online OUR measurements to detect actions points to improve baculovirus-insect cell cultures in bioreactors. J Biotechnol 125:385–394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Tibor Anderlei
    • 1
  • Michael V. Keebler
    • 2
  • Jordi Joan Cairó
    • 3
  • Martí Lecina
    • 3
    • 4
    Email author
  1. 1.Adolf Kühner AGBirsfeldenSwitzerland
  2. 2.Kuhner Shaker Inc.San CarlosUSA
  3. 3.Department of Chemical, Biological and Environmental EngineeringUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  4. 4.Bioengineering Department, IQSUniversitat Ramon LlullBarcelonaSpain

Personalised recommendations