Skip to main content

Regulatory Role of Phytohormones in Maintaining Stem Cells and Boundaries of Stem Cell Niches

  • Protocol
  • First Online:
Book cover Plant Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2094))

Abstract

Plants are multicellular organism composed of different types of cells. These all kinds of cells are formed from pluripotent stem cells present at different positions in plant called stem cell niches. All these stem cell niches and their boundaries are maintained by complex regulatory mechanism at molecular level involving different genes, cofactors, and phytohormones. In this chapter, we discussed the regulatory mechanism and models of stem cell maintenance, specifying their boundaries at different stem cell niches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichinger E et al (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636

    Article  CAS  PubMed  Google Scholar 

  2. Satina S, Blakeslee AF, Avery AG (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27(10):895–905

    Article  Google Scholar 

  3. Stewart R, Dermen H (1970) Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Am J Bot:816–826

    Article  Google Scholar 

  4. Lyndon RF (1998) The shoot apical meristem: its growth and development. Cambridge University Press, Cambridge

    Google Scholar 

  5. Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci 106(49):20984–20988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laux T (2003) The stem cell concept in plants: a matter of debate. Cell 113(3):281–283

    Article  CAS  PubMed  Google Scholar 

  7. Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414(6859):98

    Article  CAS  PubMed  Google Scholar 

  8. Hake S, Vollbrecht E, Freeling M (1989) Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J 8(1):15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith LG et al (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116(1):21–30

    CAS  PubMed  Google Scholar 

  10. Long JA et al (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379(6560):66

    Article  CAS  PubMed  Google Scholar 

  11. Endrizzi K et al (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10(6):967–979

    Article  CAS  PubMed  Google Scholar 

  12. Long JA, Barton MK (1998) The development of apical embryonic pattern in Arabidopsis. Development 125(16):3027–3035

    CAS  PubMed  Google Scholar 

  13. Brand U et al (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129(2):565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jasinski S et al (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15(17):1560–1565

    Article  CAS  PubMed  Google Scholar 

  15. Yanai O et al (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15(17):1566–1571

    Article  CAS  PubMed  Google Scholar 

  16. Frugis G et al (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126(4):1370–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrne ME et al (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408(6815):967

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Banerjee AK, Hannapel DJ (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38(2):276–284

    Article  CAS  PubMed  Google Scholar 

  19. Sakamoto T et al (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15(5):581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10(12):248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Laux T et al (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122(1):87–96

    CAS  PubMed  Google Scholar 

  22. Mayer KF et al (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815

    Article  CAS  PubMed  Google Scholar 

  23. Lenhard M, Jürgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129(13):3195–3206

    CAS  PubMed  Google Scholar 

  24. Schoof H et al (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635–644

    Article  CAS  PubMed  Google Scholar 

  25. Yadav RK, Tavakkoli M, Reddy GV (2010) WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development 137(21):3581–3589

    Article  CAS  PubMed  Google Scholar 

  26. Nakajima K et al (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413(6853):307

    Article  CAS  PubMed  Google Scholar 

  27. Leibfried A et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438(7071):1172

    Article  CAS  PubMed  Google Scholar 

  28. Busch W et al (2010) Transcriptional control of a plant stem cell niche. Dev Cell 18(5):841–853

    Article  CAS  Google Scholar 

  29. McConnell JR, Barton MK (1995) Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Genesis 16(4):358–366

    Google Scholar 

  30. Moussian B et al (1998) Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J 17(6):1799–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tucker MR et al (2008) Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135(17):2839–2843

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q et al (2009) The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 58(1):27–40

    Article  CAS  PubMed  Google Scholar 

  33. Mallory AC et al (2009) Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet 5(9):e1000646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhu H et al (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145(2):242–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121(7):2057–2067

    CAS  Google Scholar 

  36. Ito Y et al (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313(5788):842–845

    Article  CAS  PubMed  Google Scholar 

  37. Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130(14):3163–3173

    Article  CAS  PubMed  Google Scholar 

  38. Katsir L et al (2011) Peptide signaling in plant development. Curr Biol 21(9):R356–R364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kinoshita A et al (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137(22):3911–3920

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25(13):1439–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van den Berg C et al (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390(6657):287

    Article  PubMed  CAS  Google Scholar 

  42. Wildwater M et al (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123(7):1337–1349

    Article  CAS  PubMed  Google Scholar 

  43. Sarkar AK et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446(7137):811

    Article  CAS  PubMed  Google Scholar 

  44. Stahl Y et al (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19(11):909–914

    Article  CAS  PubMed  Google Scholar 

  45. Sabatini S et al (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17(3):354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levesque MP et al (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4(5):e143

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cui H et al (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316(5823):421–425

    Article  CAS  PubMed  Google Scholar 

  48. Barton M (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341(1):95–113

    Article  CAS  PubMed  Google Scholar 

  49. Wiśniewska J et al (2006) Polar PIN localization directs auxin flow in plants. Science 312(5775):883–883

    Article  PubMed  Google Scholar 

  50. Galinha C et al (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449(7165):1053

    Article  CAS  PubMed  Google Scholar 

  51. Matsuzaki Y et al (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329(5995):1065–1067

    Article  CAS  PubMed  Google Scholar 

  52. Blilou I et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39

    Article  CAS  PubMed  Google Scholar 

  53. Wang J-W et al (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci 107(26):12046–12051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Etchells JP, Turner SR (2010) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137(5):767–774

    Article  CAS  PubMed  Google Scholar 

  56. Hirakawa Y et al (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci 105(39):15208–15213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22(8):2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Whitford R et al (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci 105(47):18625–18630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Agusti J et al (2011) Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet 7(2):e1001312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao C et al (2005) The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol 138(2):803–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schrader J et al (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40(2):173–187

    Article  CAS  PubMed  Google Scholar 

  62. Bishopp A et al (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21(11):917–926

    Article  CAS  PubMed  Google Scholar 

  63. Ilegems M et al (2010) Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137(6):975–984

    Article  CAS  PubMed  Google Scholar 

  64. Carlsbecker A et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465(7296):316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ko J-H et al (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135(2):1069–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sehr EM et al (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63(5):811–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Syed, A., Hussain, A., Murad, W., Islam, B. (2020). Regulatory Role of Phytohormones in Maintaining Stem Cells and Boundaries of Stem Cell Niches. In: Naseem, M., Dandekar, T. (eds) Plant Stem Cells. Methods in Molecular Biology, vol 2094. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0183-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0183-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0182-2

  • Online ISBN: 978-1-0716-0183-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics