Skip to main content

Understanding DNA Methylation Patterns in Wheat

  • Protocol
  • First Online:
Plant Epigenetics and Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2093))

Abstract

The bread wheat genome is large (17 Gb), allohexaploid, and highly repetitive (80–90% of the genome), which makes genomic and epigenomic analyses expensive to conduct and a challenge to analyze. Here we provide an overview of recent bioinformatic and experimental methods that have been developed to understand DNA methylation patterns in the complex polyploid genome of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  2. Allen AM, Barker GL, Berry ST et al (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1086–1099

    Article  CAS  PubMed  Google Scholar 

  3. Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18:563–575

    Article  CAS  PubMed  Google Scholar 

  4. Johannes F, Porcher E, Teixeira FK et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ (2017) Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 18:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    Article  CAS  PubMed  Google Scholar 

  7. Finnegan EJ (2002) Epialleles—a source of random variation in times of stress. Curr Opin Plant Biol 5:101–106

    Article  CAS  PubMed  Google Scholar 

  8. Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Ann Rev Plant Physiol Plant Mol Biol 49:223–247

    Article  CAS  Google Scholar 

  9. Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  10. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gardiner L, Quinton-Tulloch M, Olohan L et al (2015) A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biol 16:273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Song Q, Zhang T, Stelly DM, Chen J (2017) Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang C, Yang Q, Wang W et al (2017) A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol 215:1503–1515

    Article  CAS  PubMed  Google Scholar 

  14. Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kashkush K, Feldman M, Levy A (2002) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  16. Marcussen T, Sandve SR, Heier L et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092

    Article  PubMed  CAS  Google Scholar 

  17. Kawaura K, Mochida K, Enju A et al (2009) Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC Genomics 10:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191

    Google Scholar 

  20. Chapman JA, Mascher M, Buluç A et al (2015) A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol 16:26

    Article  PubMed  PubMed Central  Google Scholar 

  21. Clavijo BJ, Venturini L, Schudoma C et al (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6(11):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olohan L, Gardiner LJ, Lucaci A et al (2018) A modified sequence capture approach allowing standard and methylation analyses of the same enriched genomic DNA sample. BMC Genomics 19:250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Winfield MO, Wilkinson PA, Allen AM et al (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742

    Article  CAS  PubMed  Google Scholar 

  25. Krasileva KV, Vasquez-Gross HA, Howell T et al (2017) Uncovering hidden variation in polyploid wheat. PNAS 114(6):E913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jordan KW, Wang S, Lun Y et al (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16:48

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gardiner LJ, Bansept-Basler P, Olohan L et al (2016) Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat. Plant J 87:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grewal S, Gardiner L, Ndreca B, Knight E, Moore G, King I, King J (2017) Comparative mapping and targeted-capture sequencing of the gametocidal loci in Aegilops sharonensis. Plant Genome 10. https://doi.org/10.3835/plantgenome2016.09.0090

    Article  CAS  Google Scholar 

  29. Gardiner LJ, Joynson R, Omony J et al (2018) Hidden variation in polyploid wheat drives local adaptation. Genome Res 28:1319–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steuernagel B, Periyannan SK, Hernández-Pinzón I et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652–655

    Article  CAS  PubMed  Google Scholar 

  31. Gardiner LJ, Brabbs T, Akhunov A et al (2018) Integrating genomic resources to present full gene and promoter capture probe sets for bread wheat. Gigascience 8. https://doi.org/10.1093/gigascience/giz018

  32. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen P, Cokus S, Pellegrini M (2010) BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Guo W, Zhu P, Pellegrini M, Zhang MQ, Wang X, Ni Z (2018) CGmapTools improves the precision of heterozygous SNV calls and supports allele-specific methylation detection and visualization in bisulfite-sequencing data. Bioinformatics 34:381–387

    Article  CAS  PubMed  Google Scholar 

  40. Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramírez-González RH, Borrill P, Lang D et al (2018) The transcriptional landscape of polyploid wheat. Science 361:eaar6089

    Article  PubMed  CAS  Google Scholar 

  42. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason CE (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gao S, Zou D, Mao L et al (2015) BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics 31:4006–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fojtová M, Kovařı́k A, Matyášek R (2001) Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Sci 160:585–593

    Article  PubMed  Google Scholar 

  48. Genereux DP, Johnson WC, Burden AF, Stöger R, Laird CD (2008) Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res 36:e150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was planned and written by L. J. G. with editorial assistance from P. M. and C. S. The research presented to develop this protocol was supported by the BBSRC via an ERA-CAPS grant (BB/N005104/1) (L.G.) and a BBSRC grant BB/L011786/1 (L.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura-Jayne Gardiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gardiner, LJ. (2020). Understanding DNA Methylation Patterns in Wheat. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics . Methods in Molecular Biology, vol 2093. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0179-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0179-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0178-5

  • Online ISBN: 978-1-0716-0179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics