Skip to main content

The Quest for the Next-Generation of Tumor Targets: Discovery and Prioritization in the Genomics Era

  • Protocol
  • First Online:
Book cover Immuno-Oncology

Abstract

Cancer immunotherapy has recently delivered impressive results. However, major roadblocks prevent the deployment of immune-oncology approaches to the majority of cancer patients, especially those with solid tumors. Chimeric antigen receptor (CAR) T-cell therapies, for example, are far from being successfully implemented.

A bottleneck in modern immunotherapy of cancer is the identification of molecules that allow effective targeting of the tumor while leaving normal tissues untouched. Historically, all major clinical developments have been focusing on tumor-associated antigens (TAAs). The landscape of TAAs, however, is restricted, with TAAs limited to cancer/testis antigens, which showed promising pre-clinical and clinical results but are targetable in only a limited number of malignancies. Furthermore, the magnitude of the immune response against hyper-expressed antigens is hindered by the general low affinity of T-cell receptors (TCRs) for self-antigens.

Recent efforts have, therefore, been directed towards the discovery and validation of neoantigens, that arise from mutations in cancer cells. Emerging alternatives to neoantigens are mutational hotspot antigens and cancer-specific isoforms of widespread proteins. Here, we describe the advantages and the drawbacks of each antigenic class in the field of immunotherapy, as well as novel in silico prediction tools for the high-throughput analysis of large “omics” datasets, which will dramatically speed up the discovery of new cancer-specific immunodominant antigens with high potential of being translated to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518. https://doi.org/10.1056/NEJMoa1215134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neelapu SS et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377:2531–2544. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carpenter RO et al (2013) B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 19:2048–2060. https://doi.org/10.1158/1078-0432.Ccr-12-2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gendler SJ et al (1987) Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc Natl Acad Sci 84:6060–6064. https://doi.org/10.1073/pnas.84.17.6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siddiqui J et al (1988) Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc Natl Acad Sci 85:2320–2323. https://doi.org/10.1073/pnas.85.7.2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van der Bruggen P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647. https://doi.org/10.1126/science.1840703

    Article  PubMed  Google Scholar 

  7. Mirandola L et al (2015) Novel antigens in non-small cell lung cancer: SP17, AKAP4, and PTTG1 are potential immunotherapeutic targets. Oncotarget 6:2812–2826. https://doi.org/10.18632/oncotarget.2802

    Article  PubMed  Google Scholar 

  8. Mirandola L et al (2017) Cancer testis antigen sperm protein 17 as a new target for triple negative breast cancer immunotherapy. Oncotarget 8:74378–74390. https://doi.org/10.18632/oncotarget.20102

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mirandola L et al (2011) Tracking human multiple myeloma xenografts in NOD-Rag-1/IL-2 receptor gamma chain-null mice with the novel biomarker AKAP-4. BMC Cancer 11:394. https://doi.org/10.1186/1471-2407-11-394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schutt C et al (2012) Immunological treatment options for locoregionally advanced head and neck squamous cell carcinoma. Int Rev Immunol 31:22–42. https://doi.org/10.3109/08830185.2011.637253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiriva-Internati M, Bot A (2015) A new era in cancer immunotherapy: discovering novel targets and reprogramming the immune system. Int Rev Immunol 34:101–103. https://doi.org/10.3109/08830185.2015.1015888

    Article  PubMed  Google Scholar 

  12. Chiriva-Internati M et al (2008) AKAP-4: a novel cancer testis antigen for multiple myeloma. Br J Haematol 140:465–468. https://doi.org/10.1111/j.1365-2141.2007.06940.x

    Article  CAS  PubMed  Google Scholar 

  13. Chiriva-Internati M, Wang Z, Pochopien S, Salati E, Lim SH (2003) Identification of a sperm protein 17 CTL epitope restricted by HLA-A1. Int J Cancer 107:863–865. https://doi.org/10.1002/ijc.11486

    Article  CAS  PubMed  Google Scholar 

  14. Chiriva-Internati M et al (2002) Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma. Blood 100:961–965. https://doi.org/10.1182/blood-2002-02-0408

    Article  CAS  PubMed  Google Scholar 

  15. Chiriva-Internati M, Wang Z, Salati E, Timmins P, Lim SH (2002) Tumor vaccine for ovarian carcinoma targeting sperm protein 17. Cancer 94:2447–2453. https://doi.org/10.1002/cncr.10506

    Article  CAS  PubMed  Google Scholar 

  16. Chiriva-Internati M et al (2010) Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer. PLoS One 5:e10471. https://doi.org/10.1371/journal.pone.0010471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grizzi F, Chiriva-Internati M (2013) Translating sperm protein 17 as a target for immunotherapy from the bench to the bedside in the light of cancer complexity. Tissue Antigens 81:116–118. https://doi.org/10.1111/tan.12052

    Article  CAS  PubMed  Google Scholar 

  18. Parkhurst MR et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19:620–626. https://doi.org/10.1038/mt.2010.272

    Article  CAS  PubMed  Google Scholar 

  19. Hailemichael Y et al (2013) Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 19:465–472. https://doi.org/10.1038/nm.3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greenman C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158. https://doi.org/10.1038/nature05610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Castle JC et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091. https://doi.org/10.1158/0008-5472.Can-11-3722

    Article  CAS  PubMed  Google Scholar 

  22. Karasaki T et al (2017) Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing. Cancer Sci 108:170–177. https://doi.org/10.1111/cas.13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. (2017) The problem with neoantigen prediction. Nat Biotechnol 35:97. doi:https://doi.org/10.1038/nbt.3800

  25. Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17:209–222. https://doi.org/10.1038/nrc.2016.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolfel T et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    Article  CAS  PubMed  Google Scholar 

  27. Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404. https://doi.org/10.1038/nature10755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tran E et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–645. https://doi.org/10.1126/science.1251102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tran E et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375:2255–2262. https://doi.org/10.1056/NEJMoa1609279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tran E, Robbins PF, Rosenberg SA (2017) ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18:255–262. https://doi.org/10.1038/ni.3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu G, Zhang F, Ni Q, Niu G, Chen X (2017) Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano 11:2387–2392. https://doi.org/10.1021/acsnano.7b00978

    Article  CAS  PubMed  Google Scholar 

  32. Sahin U et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226. https://doi.org/10.1038/nature23003

    Article  CAS  PubMed  Google Scholar 

  33. Makohon-Moore AP et al (2017) Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet 49:358–366. https://doi.org/10.1038/ng.3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carbone DP et al (2005) Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23:5099–5107. https://doi.org/10.1200/JCO.2005.03.158

    Article  PubMed  Google Scholar 

  35. Shono Y et al (2003) Specific T-cell immunity against K-ras peptides in patients with pancreatic and colorectal cancers. Br J Cancer 88:530–536. https://doi.org/10.1038/sj.bjc.6600697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ichiki Y et al (2004) Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol 172:4844–4850

    Article  CAS  PubMed  Google Scholar 

  37. Sharkey MS, Lizee G, Gonzales MI, Patel S, Topalian SL (2004) CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res 64:1595–1599

    Article  CAS  PubMed  Google Scholar 

  38. Andersen MH et al (2004) Immunogenicity of constitutively active V599EBRaf. Cancer Res 64:5456–5460. https://doi.org/10.1158/0008-5472.Can-04-0937

    Article  CAS  PubMed  Google Scholar 

  39. Holmstrom MO et al (2017) The JAK2V617F mutation is a target for specific T cells in the JAK2V617F-positive myeloproliferative neoplasms. Leukemia 31:495–498. https://doi.org/10.1038/leu.2016.290

    Article  CAS  PubMed  Google Scholar 

  40. Holmstrom MO et al (2018) The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia 32:429–437. https://doi.org/10.1038/leu.2017.214

    Article  CAS  PubMed  Google Scholar 

  41. Schwartzentruber J et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  42. Bender S et al (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672. https://doi.org/10.1016/j.ccr.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  43. Schumacher T et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327. https://doi.org/10.1038/nature13387

    Article  CAS  PubMed  Google Scholar 

  44. Hartmaier RJ et al (2017) Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies. Genome Med 9:16. https://doi.org/10.1186/s13073-017-0408-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weinstein JN et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. genomics H (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660. https://doi.org/10.1126/science.1262110

    Article  CAS  Google Scholar 

  48. GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  49. Vita R et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43:D405–D412. https://doi.org/10.1093/nar/gku938

    Article  CAS  PubMed  Google Scholar 

  50. Molero-Abraham M, Lafuente EM, Reche P (2014) Customized predictions of peptide-MHC binding and T-cell epitopes using EPIMHC. Methods Mol Biol (Clifton, NJ) 1184:319–332. https://doi.org/10.1007/978-1-4939-1115-8_18

    Article  CAS  Google Scholar 

  51. Toseland CP et al (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immun Res 1:4. https://doi.org/10.1186/1745-7580-1-4

    Article  CAS  Google Scholar 

  52. Lafuente EM, Reche PA (2009) Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr Pharm Des 15:3209–3220

    Article  CAS  PubMed  Google Scholar 

  53. Larsen MV et al (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303. https://doi.org/10.1002/eji.200425811

    Article  CAS  PubMed  Google Scholar 

  54. Fritsch EF, Hacohen N, Wu CJ (2014) Personal neoantigen cancer vaccines: the momentum builds. Oncoimmunology 3:e29311. https://doi.org/10.4161/onci.29311

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang ET et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen J, Weiss WA (2015) Alternative splicing in cancer: implications for biology and therapy. Oncogene 34:1–14. https://doi.org/10.1038/onc.2013.570

    Article  CAS  PubMed  Google Scholar 

  57. Danan-Gotthold M et al (2015) Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res 43:5130–5144. https://doi.org/10.1093/nar/gkv210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barrett CL et al (2015) Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy. Proc Natl Acad Sci U S A 112:E3050–E3057. https://doi.org/10.1073/pnas.1508057112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eswaran J et al (2013) RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 3:1689. https://doi.org/10.1038/srep01689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao Q et al (2013) Tumor-specific isoform switch of the fibroblast growth factor receptor 2 underlies the mesenchymal and malignant phenotypes of clear cell renal cell carcinomas. Clin Cancer Res 19:2460–2472. https://doi.org/10.1158/1078-0432.Ccr-12-3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oltean S, Bates DO (2014) Hallmarks of alternative splicing in cancer. Oncogene 33:5311–5318. https://doi.org/10.1038/onc.2013.533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Chiriva-Internati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mirandola, L. et al. (2020). The Quest for the Next-Generation of Tumor Targets: Discovery and Prioritization in the Genomics Era. In: Tan, SL. (eds) Immuno-Oncology. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0171-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0171-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0170-9

  • Online ISBN: 978-1-0716-0171-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics