Skip to main content

Enzymatic Bioautographic Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2089))

Abstract

Enzymatic bioautography enables the detection of enzyme inhibitors absorbed on a thin-layer chromatography plate. Therefore, it is an assay format that is particularly useful for the detection of inhibitors present in complex mixtures. The inhibition properties of compounds separated by thin-layer chromatography can be directly analyzed to produce an inhibition profile. Here, we describe the conditions to detect inhibitor of the enzymes xanthine oxidase and β-glucosidase immobilized on agar gel.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cieśla ŁM, Waksmundzka-Hajnos M, Wojtunik KA, Hajnos M (2015) Thin-layer chromatography coupled with biological detection to screen natural mixtures for potential drug leads. Phytochem Lett 11:445–454

    Article  Google Scholar 

  2. Bräm S, Wolfram E (2017) Recent advances in effect-directed enzyme assays based on thin-layer chromatography. Phytochem Anal 28:74–86

    Article  Google Scholar 

  3. Pacher P, Nivorozhkin A, Szabó C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114

    Article  CAS  Google Scholar 

  4. Choi HK, Mount DB, Reginato AM (2005) Pathogenesis of gout. Ann Intern Med 143:499–516

    Article  CAS  Google Scholar 

  5. Kim SC, Schneeweiss S, Choudhry N, Liu J, Glynn RJ, Solomon DH (2015) Effects of xanthine oxidase inhibitors on cardiovascular disease in patients with gout: a cohort study. Am J Med 128:653.e7–e653.e16

    Article  CAS  Google Scholar 

  6. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA (2009) Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum 61:885–892

    Article  Google Scholar 

  7. Grayson PC, Kim SY, LaValley M, Choi HK (2010) Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 63:102–110

    Article  Google Scholar 

  8. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA (2010) Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken) 62:170–180

    Google Scholar 

  9. Linas SL, Whittenburg D, Repine JE (1990) Role of xanthine oxidase in ischemia/reperfusion injury. Am J Phys 258:F711–F716

    CAS  Google Scholar 

  10. Doehner W, Jankowska EA, Springer J, Lainscak M, Anker SD (2016) Uric acid and xanthine oxidase in heart failure—emerging data and therapeutic implications. Int J Cardiol 213:15–19

    Article  Google Scholar 

  11. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340

    Article  Google Scholar 

  12. Ramallo IA, Zacchino SA, Furlan RLE (2006) A rapid tlc autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem Anal 17:15–19

    Article  CAS  Google Scholar 

  13. Garcia P, Ramallo IA, Salazar MO, Furlan RLE (2016) Chemical diversification of essential oils, evaluation of complex mixtures and identification of a xanthine oxidase inhibitor. RSC Adv 6:57245–57252

    Article  CAS  Google Scholar 

  14. Ketudat Cairns JR (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405

    Article  CAS  Google Scholar 

  15. Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93R–104R

    Article  CAS  Google Scholar 

  16. Borges de Melo E, da Silveira Gomes A, Carvalho I (2006) α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62:10277–10302

    Article  CAS  Google Scholar 

  17. Salazar MO, Furlan RLE (2007) A rapid tlc autographic method for the detection of glucosidase inhibitors. Phytochem Anal 18:209–212

    Article  CAS  Google Scholar 

  18. Salazar MO, Osella MI, Ramallo IA, Furlan RLE (2018) Nα-arylsulfonyl histamines as selective β-glucosidase inhibitors. RSC Adv 8:36209–36218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. E. Furlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramallo, I.A., Salazar, M.O., Furlan, R.L.E. (2020). Enzymatic Bioautographic Methods. In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0163-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0162-4

  • Online ISBN: 978-1-0716-0163-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics