Abstract
Accurate quantification of mass isotopolog distribution (MID) of intracellular metabolites is a key requirement for 13C metabolic flux analysis (13C–MFA). Liquid chromatography coupled with mass spectrometry (LC/MS) has emerged as a frontrunner technique that combines two orthogonal separation strategies. While metabolomics requires separation of monoisotopic peaks, 13C-MFA imposes additional demands for chromatographic separation as isotopologs of metabolites significantly add to the number of analytes. In this protocol chapter, we discuss two liquid chromatography methods, namely, reverse phase ion-pairing and hydrophilic interaction chromatography (HILIC) that together can separate a wide variety of metabolites that are typically used for 13C metabolic flux analysis.
Key words
- Sugar phosphates
- Nucleotides
- Reverse phase ion-pairing
- HILIC
- Metabolic flux analysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Mathew AK, Padmanaban VC (2013) Metabolomics: the apogee of the omics trilogy. Int J Pharm Pharm Sci 5:45–48. https://doi.org/10.1038/nrm3314
Fiehn O, Kopka J, Dörmann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161. https://doi.org/10.1038/81137
McAtee AG, Jazmin LJ, Young JD (2015) Application of isotope labeling experiments and 13C flux analysis to enable rational pathway engineering. Curr Opin Biotechnol 36:50–56. https://doi.org/10.1016/j.copbio.2015.08.004
Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614
Lee SY, Park JM, Kim TY (2011) Application of metabolic flux analysis in metabolic engineering, 1st edn. Elsevier Inc, Amsterdam
Ohta E, Dempo Y, Fukusaki E et al (2014) Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 4:499–516. https://doi.org/10.3390/metabo4020499
Luo B, Groenke K, Takors R et al (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164. https://doi.org/10.1016/j.chroma.2007.02.034
Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242. https://doi.org/10.1016/j.jchromb.2008.04.031
Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13:656–665. https://doi.org/10.1016/j.ymben.2011.08.002
Alagesan S, Gaudana SB, Sinha A, Wangikar PP (2013) Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions. Photosynth Res 118:191–198. https://doi.org/10.1007/s11120-013-9911-5
Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal Bioanal Chem 402:231–247. https://doi.org/10.1007/s00216-011-5308-5
Keasling JD, Adams PD, Benites VT et al (2018) Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng 47:60–72. https://doi.org/10.1016/j.ymben.2018.03.004
Prasannan CB, Jaiswal D, Davis R, Wangikar PP (2018) An improved method for extraction of polar and charged metabolites from cyanobacteria. PLoS One 13(10):1–16. https://doi.org/10.21228/M8WT20
Jaiswal D, Prasannan CB, Hendry JI, Wangikar PP (2018) SWATH tandem mass spectrometry workflow for quantification of mass isotopologue distribution of intracellular metabolites and fragments labeled with isotopic 13C carbon. Anal Chem 90:6486–6493. https://doi.org/10.1021/acs.analchem.7b05329
Hendry JI, Prasannan C, Ma F et al (2017) Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13C metabolic flux analysis. Biotechnol Bioeng 114:2298–2308. https://doi.org/10.1002/bit.26350
McCloskey D, Utrilla J, Naviaux RK et al (2014) Fast Swinnex filtration (FSF): a fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media. Metabolomics 11:198–209. https://doi.org/10.1007/s11306-014-0686-2
Ikeda TP, Shauger AE, Kustu S (1996) Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J Mol Biol 259:589–607. https://doi.org/10.1006/jmbi.1996.0342
Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22:1434–1442. https://doi.org/10.1021/bp050381q
Lu W, Kimball E, Rabinowitz JD (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J Am Soc Mass Spectrom 17:37–50. https://doi.org/10.1016/j.jasms.2005.09.001
Ståhlberg J (1999) Retention models for ions in chromatography. J Chromatogr A 855:3–55. https://doi.org/10.1016/S0021-9673(99)00176-4
Qian T, Cai Z, Yang MS (2004) Determination of adenosine nucleotides in cultured cells by ion-pairing liquid chromatography-electrospray ionization mass spectrometry. Anal Biochem 325:77–84. https://doi.org/10.1016/j.ab.2003.10.028
Lu W, Clasquin MF, Melamud E et al (2010) Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone Orbitrap mass spectrometer. Anal Chem 82:3212–3221
Mccloskey D, Gangoiti JA (2015) A pH and solvent optimized reverse-phase ion-paring-LC-MS/MS method that leverages multiple scan-types for targeted absolute quantification of intracellular metabolites. Metabolomics 11:1338–1350. https://doi.org/10.1007/s11306-015-0790-y
Jaiswal D, Sengupta A, Sohoni S, Sengupta S (2018) Genome features and biochemical characteristics of a robust , fast growing and naturally transformable Cyanobacterium Synechococcus elongatus PCC 11801 isolated from India. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-34872-z
Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196. https://doi.org/10.1016/S0021-9673(00)96972-3
Navarro-Reig M, Ortiz-Villanueva E, Tauler R, Jaumot J (2017) Modelling of hydrophilic interaction liquid chromatography stationary phases using chemometric approaches. Meta 7:6–9. https://doi.org/10.3390/metabo7040054
Kawachi Y, Ikegami T, Takubo H et al (2011) Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: Hydrophilicity, charge effects, structural selectivity, and separation efficiency. J Chromatogr A 1218:5903–5919. https://doi.org/10.1016/j.chroma.2011.06.048
Creek DJ, Chokkathukalam A, Jankevics A et al (2012) Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Anal Chem 84:8442–8447. https://doi.org/10.1021/ac3018795
Trammell SA, Brenner C (2013) Targeted, LCMS-based metabolomics for quantitative measurement of NAD+ metabolites. Comput Struct Biotechnol J 4:e201301012. https://doi.org/10.5936/csbj.201301012
Bustamante S, Jayasena T, Richani D et al (2018) Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Metabolomics 14:15. https://doi.org/10.1007/s11306-017-1310-z
Tautenhahn R, Cho K, Uritboonthai W et al (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30:826–828. https://doi.org/10.1038/nbt.2348
Jewison T, Knox C, Neveu V et al (2012) YMDB: the yeast Metabolome database. Nucleic Acids Res 40:D815–D820. https://doi.org/10.1093/nar/gkr916
Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:521–526. https://doi.org/10.1093/nar/gkl923
Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124. https://doi.org/10.1021/ed100697w
Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393
Li H, Cai Y, Guo Y et al (2016) MetDIA: targeted metabolite extraction of multiplexed MS/MS spectra generated by data-independent acquisition. Anal Chem 88:8757–8764. https://doi.org/10.1021/acs.analchem.6b02122
Acknowledgments
This work was supported by a grant from Department of Biotechnology (DBT), Government of India, awarded to PPW toward DBT-Pan IIT Center for Bioenergy (Grant No. BT/EB/PAN IIT/2012).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Jaiswal, D., Mittal, A., Nagrath, D., Wangikar, P.P. (2020). Liquid Chromatography Methods for Separation of Polar and Charged Intracellular Metabolites for 13C Metabolic Flux Analysis. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_3
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0159-4_3
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0158-7
Online ISBN: 978-1-0716-0159-4
eBook Packages: Springer Protocols