Skip to main content

Neutrophil Defects and Diagnosis Disorders of Neutrophil Function: An Overview

  • Protocol
  • First Online:
Neutrophil

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2087))

Abstract

Primary disorders of neutrophil function result from impairment in neutrophil responses that are critical for host defense. This chapter summarizes inherited disorders of neutrophils that cause defects in neutrophil adhesion, migration, and oxidative killing. These include the leukocyte adhesion deficiencies, actin defects and other disorders of chemotaxis, hyperimmunoglobulin E syndrome, Chédiak–Higashi Syndrome, neutrophil specific granule deficiency, chronic granulomatous disease, and myeloperoxidase deficiency. Diagnostic tests and treatment approaches are also summarized for each neutrophil disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CGD:

Chronic granulomatous disease

DHR:

Dihydrorhodamine 123

HIES:

Hyperimmunoglobulin E

HSC:

Hematopoietic stem cell

LAD:

Leukocyte adhesion deficiency

LJP:

Localized juvenile periodontitis

MPO:

Myeloperoxidase

NBT:

Nitroblue tetrazolium

phox :

Phagocyte oxidase

References

  1. Dinauer M, Coates T (2018) Disorders of phagocyte function. In: Hoffman (ed) Hematology: basic principles and practice, 7th edn. Elsevier Inc, Philadelphia, PA, pp 691–709

    Chapter  Google Scholar 

  2. Lekstrom-Himes JA, Gallin JI (2000) Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med 343(23):1703–1714

    Article  CAS  Google Scholar 

  3. Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15(7):602–611. https://doi.org/10.1038/ni.2921

    Article  CAS  Google Scholar 

  4. Bouma G, Ancliff PJ, Thrasher AJ, Burns SO (2010) Recent advances in the understanding of genetic defects of neutrophil number and function. Br J Haematol 151(4):312–326. https://doi.org/10.1111/j.1365-2141.2010.08361.x

    Article  CAS  PubMed  Google Scholar 

  5. Hanna S, Etzioni A (2012) Leukocyte adhesion deficiencies. Ann N Y Acad Sci 1250:50–55. https://doi.org/10.1111/j.1749-6632.2011.06389.x

    Article  CAS  PubMed  Google Scholar 

  6. van de Vijver E, Maddalena A, Sanal O, Holland SM, Uzel G, Madkaikar M, de Boer M, van Leeuwen K, Koker MY, Parvaneh N, Fischer A, Law SK, Klein N, Tezcan FI, Unal E, Patiroglu T, Belohradsky BH, Schwartz K, Somech R, Kuijpers TW, Roos D (2012) Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cells Mol Dis 48(1):53–61. https://doi.org/10.1016/j.bcmd.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Harris ES, Weyrich AS, Zimmerman GA (2013) Lessons from rare maladies: leukocyte adhesion deficiency syndromes. Curr Opin Hematol 20(1):16–25. https://doi.org/10.1097/MOH.0b013e32835a0091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schymeinsky J, Mocsai A, Walzog B (2007) Neutrophil activation via beta2 integrins (CD11/CD18): molecular mechanisms and clinical implications. Thromb Haemost 98(2):262–273

    Article  CAS  Google Scholar 

  9. Moutsopoulos NM, Konkel J, Sarmadi M, Eskan MA, Wild T, Dutzan N, Abusleme L, Zenobia C, Hosur KB, Abe T, Uzel G, Chen W, Chavakis T, Holland SM, Hajishengallis G (2014) Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med 6(229):229ra240. https://doi.org/10.1126/scitranslmed.3007696

    Article  CAS  Google Scholar 

  10. Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 97(9):4654–4659

    Article  CAS  Google Scholar 

  11. Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, Jia B, Zheng Y, Ambruso DR, Lowe JB, Atkinson SJ, Dinauer MC, Boxer L (2000) Dominant negative mutation of the hematopoietic-specific rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96(5):1646–1654

    CAS  PubMed  Google Scholar 

  12. Roos D, Kuijpers TW, Mascart-Lemone F, Koenderman L, de Boer M, van Zwieten R, Verhoeven AJ (1993) A novel syndrome of severe neutrophil dysfunction: unresponsiveness confined to chemotaxin-induced functions. Blood 81(10):2735–2743

    Article  CAS  Google Scholar 

  13. Coates TD, Torkildson JC, Torres M, Church JA, Howard TH (1991) An inherited defect of neutrophil motility and microfilamentous cytoskeleton associated with abnormalities in 47-Kd and 89-Kd proteins. Blood 78(5):1338–1346

    Article  CAS  Google Scholar 

  14. Howard T, Li Y, Torres M, Guerrero A, Coates T (1994) The 47-kD protein increased in neutrophil actin dysfunction with 47- and 89-kD protein abnormalities is lymphocyte-specific protein. Blood 83(1):231–241

    Article  CAS  Google Scholar 

  15. Nunoi H, Yamazaki T, Tsuchiya H, Kato S, Malech HL, Matsuda I, Kanegasaki S (1999) A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci U S A 96(15):8693–8698

    Article  CAS  Google Scholar 

  16. Kuhns DB, Fink DL, Choi U, Sweeney C, Lau K, Priel DL, Riva D, Mendez L, Uzel G, Freeman AF, Olivier KN, Anderson VL, Currens R, Mackley V, Kang A, Al-Adeli M, Mace E, Orange JS, Kang E, Lockett SJ, Chen SPJ, Hsu AP, Zarember KA, Malech HL, Gallin JI, Holland SM (2016) Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128(17):2135–2143. https://doi.org/10.1182/blood-2016-03-706028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Dyke TE, Vaikuntam J (1994) Neutrophil function and dysfunction in periodontal disease. Curr Opin Periodontol:19–27

    Google Scholar 

  18. Oh TJ, Eber R, Wang HL (2002) Periodontal diseases in the child and adolescent. J Clin Periodontol 29(5):400–410

    Article  Google Scholar 

  19. Nibali L, O'Dea M, Bouma G, Parkar M, Thrasher AJ, Burns S, Donos N (2010) Genetic variants associated with neutrophil function in aggressive periodontitis and healthy controls. J Periodontol 81(4):527–534. https://doi.org/10.1902/jop.2010.090543

    Article  CAS  PubMed  Google Scholar 

  20. Shaddox L, Wiedey J, Bimstein E, Magnuson I, Clare-Salzler M, Aukhil I, Wallet SM (2010) Hyper-responsive phenotype in localized aggressive periodontitis. J Dent Res 89(2):143–148. https://doi.org/10.1177/0022034509353397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grimbacher B, Holland SM, Gallin JI, Greenberg F, Hill SC, Malech HL, Miller JA, O'Connell AC, Puck JM (1999) Hyper-IgE syndrome with recurrent infections--an autosomal dominant multisystem disorder. N Engl J Med 340(9):692–702

    Article  CAS  Google Scholar 

  22. Sowerwine KJ, Holland SM, Freeman AF (2012) Hyper-IgE syndrome update. Ann N Y Acad Sci 1250:25–32. https://doi.org/10.1111/j.1749-6632.2011.06387.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Q, Su HC (2011) Hyperimmunoglobulin E syndromes in pediatrics. Curr Opin Pediatr 23(6):653–658. https://doi.org/10.1097/MOP.0b013e32834c7f65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farmand S, Sundin M (2015) Hyper-IgE syndromes: recent advances in pathogenesis, diagnostics and clinical care. Curr Opin Hematol 22(1):12–22. https://doi.org/10.1097/MOH.0000000000000104

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen-Jackson H, Panopoulos AD, Zhang H, Li HS, Watowich SS (2010) STAT3 controls the neutrophil migratory response to CXCR2 ligands by direct activation of G-CSF-induced CXCR2 expression and via modulation of CXCR2 signal transduction. Blood 115(16):3354–3363. https://doi.org/10.1182/blood-2009-08-240317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koenig JM, Yoder MC (2004) Neonatal neutrophils: the good, the bad, and the ugly. Clin Perinatol 31(1):39–51. https://doi.org/10.1016/j.clp.2004.03.013

    Article  PubMed  Google Scholar 

  27. Hill HR (1987) Biochemical, structural, and functional abnormalities of polymorphonuclear leukocytes in the neonate. Pediatr Res 22(4):375–382. https://doi.org/10.1203/00006450-198710000-00001

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence SM, Corriden R, Nizet V (2017) Age-appropriate functions and dysfunctions of the neonatal neutrophil. Front Pediatr 5:23. https://doi.org/10.3389/fped.2017.00023

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kaplan J, De Domenico I, Ward DM (2008) Chediak-Higashi syndrome. Curr Opin Hematol 15(1):22–29. https://doi.org/10.1097/MOH.0b013e3282f2bcce

    Article  CAS  PubMed  Google Scholar 

  30. Manoli I, Golas G, Westbroek W, Vilboux T, Markello TC, Introne W, Maynard D, Pederson B, Tsilou E, Jordan MB, Hart PS, White JG, Gahl WA, Huizing M (2010) Chediak-Higashi syndrome with early developmental delay resulting from paternal heterodisomy of chromosome 1. Am J Med Genet A 152A(6):1474–1483. https://doi.org/10.1002/ajmg.a.33389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janka GE (2012) Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med 63:233–246. https://doi.org/10.1146/annurev-med-041610-134208

    Article  CAS  PubMed  Google Scholar 

  32. Gallin JI (1985) Neutrophil specific granule deficiency. Annu Rev Med 36:263–274. https://doi.org/10.1146/annurev.me.36.020185.001403

    Article  CAS  PubMed  Google Scholar 

  33. Gombart AF, Koeffler HP (2002) Neutrophil specific granule deficiency and mutations in the gene encoding transcription factor C/EBP(epsilon). Curr Opin Hematol 9(1):36–42

    Article  Google Scholar 

  34. Lekstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI (1999) Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J Exp Med 189(11):1847–1852

    Article  CAS  Google Scholar 

  35. Nunes P, Demaurex N, Dinauer MC (2013) Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic 14(11):1118–1131. https://doi.org/10.1111/tra.12115

    Article  CAS  PubMed  Google Scholar 

  36. Dinauer MC (2019) Inflammatory consequences of inherited disorders affecting neutrophil function. Blood (Epub ahead of print) 133(20):2130–2139. https://doi.org/10.1182/blood-2018-11-844563

    Article  CAS  Google Scholar 

  37. Dinauer MC (2016) Primary immune deficiencies with defects in neutrophil function. Hematology Am Soc Hematol Educ Program 2016(1):43–50. https://doi.org/10.1182/asheducation-2016.1.43

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seger RA (2008) Modern management of chronic granulomatous disease. Br J Haematol 140(3):255–266. https://doi.org/10.1111/j.1365-2141.2007.06880.x

    Article  CAS  PubMed  Google Scholar 

  39. Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, Li XJ, Marchal CC, Stull ND, Lewis DB, Steele M, Kellner JD, Yu W, Meroueh SO, Nauseef WM, Dinauer MC (2009) A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 114(15):3309–3315. https://doi.org/10.1182/blood-2009-07-231498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL (2011) Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol 127(6):1319–1326.; quiz 1327-1318. https://doi.org/10.1016/j.jaci.2011.03.028

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, Uzel G, DeRavin SS, Priel DA, Soule BP, Zarember KA, Malech HL, Holland SM, Gallin JI (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610. https://doi.org/10.1056/NEJMoa1007097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roos D, Kuhns DB, Maddalena A, Bustamante J, Kannengiesser C, de Boer M, van Leeuwen K, Koker MY, Wolach B, Roesler J, Malech HL, Holland SM, Gallin JI, Stasia MJ (2010) Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis 44(4):291–299. https://doi.org/10.1016/j.bcmd.2010.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T, Avcin T, de Boer M, Bustamante J, Condino-Neto A, Di Matteo G, He J, Hill HR, Holland SM, Kannengiesser C, Koker MY, Kondratenko I, van Leeuwen K, Malech HL, Marodi L, Nunoi H, Stasia MJ, Ventura AM, Witwer CT, Wolach B, Gallin JI (2010) Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 45(3):246–265. https://doi.org/10.1016/j.bcmd.2010.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, Grant AV, Marchal CC, Hubeau M, Chapgier A, de Beaucoudrey L, Puel A, Feinberg J, Valinetz E, Janniere L, Besse C, Boland A, Brisseau JM, Blanche S, Lortholary O, Fieschi C, Emile JF, Boisson-Dupuis S, Al-Muhsen S, Woda B, Newburger PE, Condino-Neto A, Dinauer MC, Abel L, Casanova JL (2011) Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12(3):213–221. https://doi.org/10.1038/ni.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van de Geer A, Nieto-Patlan A, Kuhns DB, Tool AT, Arias AA, Bouaziz M, de Boer M, Franco JL, Gazendam RP, van Hamme JL, van Houdt M, van Leeuwen K, Verkuijlen PJ, van den Berg TK, Alzate JF, Arango-Franco CA, Batura V, Bernasconi AR, Boardman B, Booth C, Burns SO, Cabarcas F, Bensussan NC, Charbit-Henrion F, Corveleyn A, Deswarte C, Azcoiti ME, Foell D, Gallin JI, Garces C, Guedes M, Hinze CH, Holland SM, Hughes SM, Ibanez P, Malech HL, Meyts I, Moncada-Velez M, Moriya K, Neves E, Oleastro M, Perez L, Rattina V, Oleaga-Quintas C, Warner N, Muise AM, Lopez JS, Trindade E, Vasconcelos J, Vermeire S, Wittkowski H, Worth A, Abel L, Dinauer MC, Arkwright PD, Roos D, Casanova JL, Kuijpers TW, Bustamante J (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128(9):3957–3975. https://doi.org/10.1172/JCI97116

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thomas DC, Charbonnier LM, Schejtman A, Aldhekri H, Coomber EL, Dufficy ER, Beenken AE, Lee JC, Clare S, Speak AO, Thrasher AJ, Santilli G, Al-Mousa H, Alkuraya FS, Chatila TA, Smith KGC (2019) EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol 143(2):782–785 e781. https://doi.org/10.1016/j.jaci.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  47. Arnadottir G (2018) A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun 9(1):4447. https://doi.org/10.1038/s41467-018-06964-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes-Pagano E, Freeman BA, Gladwin MT, Pagano PJ (2011) Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51(7):1271–1288. https://doi.org/10.1016/j.freeradbiomed.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roesler J, Curnutte JT, Rae J, Barrett D, Patino P, Chanock SJ, Goerlach A (2000) Recombination events between the p47-phox gene and its highly homologous pseudogenes are the main cause of autosomal recessive chronic granulomatous disease. Blood 95(6):2150–2156

    Article  CAS  Google Scholar 

  50. Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S, Yockey L, Darnell DN, Barnhart L, Daub J, Boris L, Rump AP, Anderson VL, Haney C, Kuhns DB, Rosenzweig SD, Kelly C, Zelazny A, Mason T, DeRavin SS, Kang E, Gallin JI, Malech HL, Olivier KN, Uzel G, Freeman AF, Heller T, Zerbe CS, Holland SM (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60(8):1176–1183. https://doi.org/10.1093/cid/ciu1154

    Article  CAS  PubMed  Google Scholar 

  51. Henrickson SE, Jongco AM, Thomsen KF, Garabedian EK, Thomsen IP (2018) Noninfectious manifestations and complications of chronic granulomatous disease. J Pediatric Infect Dis Soc 7(suppl_1):S18–S24. https://doi.org/10.1093/jpids/piy014

    Article  PubMed  PubMed Central  Google Scholar 

  52. Marciano B, Zerbe C, Falcone E, Ding L, DeRavin S, Daub J, Kreuzburg S, Yockey L, Hunsberger S, Foruraghi L, Barnhart L, Matharu K, Anderson V, Darnell D, Frein C, Fink D, Lau K, Long Priel D, Gallin J, Malech H, Uzel G, Freeman A, Kuhns D, Rosenzweig S, Holland S (2018) X-linked carriers of chronic granulomatous disease: illness, lyonization, and stability. J Allergy Clin Immunol 141(1):365–371

    Article  CAS  Google Scholar 

  53. Battersby AC, Cale AM, Goldblatt D, Gennery AR (2013) Clinical manifestations of disease in X-linked carriers of chronic granulomatous disease. J Clin Immunol 33(8):1276–1284. https://doi.org/10.1007/s10875-013-9939-5

    Article  CAS  PubMed  Google Scholar 

  54. Vowells SJ, Fleisher TA, Sekhsaria S, Alling DW, Maguire TE, Malech HL (1996) Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr 128(1):104–107

    Article  CAS  Google Scholar 

  55. Foster CB, Lehrnbecher T, Mol F, Steinberg SM, Venzon DJ, Walsh TJ, Noack D, Rae J, Winkelstein JA, Curnutte JT, Chanock SJ (1998) Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J Clin Invest 102(12):2146–2155

    Article  CAS  Google Scholar 

  56. Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 178(1):89–97

    Article  CAS  Google Scholar 

  57. Thomsen IP, Smith MA, Holland SM, Creech CB (2016) A comprehensive approach to the management of children and adults with chronic granulomatous disease. J Allergy Clin Immunol Pract 4(6):1082–1088. https://doi.org/10.1016/j.jaip.2016.03.021

    Article  PubMed  Google Scholar 

  58. Gallin JI, Alling DW, Malech HL, Wesley R, Koziol D, Marciano B, Eisenstein EM, Turner ML, DeCarlo ES, Starling JM, Holland SM (2003) Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med 348(24):2416–2422

    Article  CAS  Google Scholar 

  59. Marciano BE, Wesley R, De Carlo ES, Anderson VL, Barnhart LA, Darnell D, Malech HL, Gallin JI, Holland SM (2004) Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis 39(5):692–699

    Article  CAS  Google Scholar 

  60. The International Chronic Granulomatous Disease Cooperative Study Group (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324(8):509–516. https://doi.org/10.1056/NEJM199102213240801

    Article  Google Scholar 

  61. Gungor T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, Vermont C, Ahmad I, Shaw PJ, Telles da Cunha JM, Schlegel PG, Hough R, Fasth A, Kentouche K, Gruhn B, Fernandes JF, Lachance S, Bredius R, Resnick IB, Belohradsky BH, Gennery A, Fischer A, Gaspar HB, Schanz U, Seger R, Rentsch K, Veys P, Haddad E, Albert MH, Hassan M, Inborn Errors Working Party of the European Society for B, Marrow T (2014) Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet 383(9915):436–448. https://doi.org/10.1016/S0140-6736(13)62069-3

    Article  CAS  PubMed  Google Scholar 

  62. Morillo-Gutierrez B, Beier R, Rao K, Burroughs L, Schulz A, Ewins AM, Gibson B, Sedlacek P, Krol L, Strahm B, Zaidman I, Kalwak K, Talano JA, Woolfrey A, Fraser C, Meyts I, Muller I, Wachowiak J, Bernardo ME, Veys P, Sykora KW, Gennery AR, Slatter M (2016) Treosulfan based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicentre experience. Blood 128(3):440–448. https://doi.org/10.1182/blood-2016-03-704015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Booth C, Gaspar HB, Thrasher AJ (2016) Treating immunodeficiency through HSC gene therapy. Trends Mol Med 22(4):317–327. https://doi.org/10.1016/j.molmed.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  64. Kuo CY, Kohn DB (2016) Gene therapy for the treatment of primary immune deficiencies. Curr Allergy Asthma Rep 16(5):39. https://doi.org/10.1007/s11882-016-0615-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM (2013) Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 93(2):185–198. https://doi.org/10.1189/jlb.0712349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beutler E (1994) G6PD deficiency. Blood 84(11):3613–3636

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. Dinauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dinauer, M.C. (2020). Neutrophil Defects and Diagnosis Disorders of Neutrophil Function: An Overview. In: Quinn, M., DeLeo, F. (eds) Neutrophil. Methods in Molecular Biology, vol 2087. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0154-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0154-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0153-2

  • Online ISBN: 978-1-0716-0154-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics