Skip to main content

Development of Baseline Quantitative Structure-Activity Relationships (QSARs) for the Effects of Active Pharmaceutical Ingredients (APIs) to Aquatic Species

  • Protocol
  • First Online:
Book cover Ecotoxicological QSARs

Abstract

The aim of this work was to develop predictive approaches for acute and chronic toxicity in fish, Daphnia, and algae utilizing baseline toxicity models. Currently available public active pharmaceutical ingredient (API) ecotoxicity data were compared to published baseline toxicity QSARs and classification schemes for industrial chemicals. The results showed that methods of assessing ecotoxicity for industrial chemicals are not adequate for the assessment of APIs. To develop equivalent prediction methods for APIs, acute baseline toxicity QSARs for APIs based on hydrophobicity (as log P) were constructed, and the lower limits of toxicity for the public API data were compared with published industrial baseline toxicity QSARs for fish, Daphnia, and algae. These baseline toxicity QSARs were subsequently compared to the available acute toxicity data from the iPiE database. Since 75% of APIs are ionizable, baseline toxicity QSARs were also constructed using log D at pH 7.0. For chronic toxicity baselines, uncensored NOEC and LOEC data from the iPiE database were plotted using either log P or log D at pH 7.0. An alternative methodology was used to develop chronic baseline toxicity QSARs which consisted of iteratively refining the line of best fit until approximately 90% of the values were above the baseline toxicity QSARs. These chronic baseline toxicity QSARs could subsequently be used to identify groups which exhibit toxicity in excess of the baseline (i.e., greater than 10× the hydrophobicity-predicted toxicity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Medicines Agency (EMEA, 2006): Guideline on the environmental risk assessment of medicinal products for human use. Doc. Ref. EMEA/CHMP/SWP/4447/00 corr 2

    Google Scholar 

  2. OECD (2018) Test no. 201: freshwater alga and cyanobacteria, growth inhibition test. Available online at http://www.oecd-ilibrary.org/environment/test-no-201-alga-growth-inhibition-test_9789264069923-en;jsessionid=3he2xatcu4u0i.x-oecd-live-03

  3. OECD (2004) Test No. 202: Daphnia sp. Acute immobilisation test. Available online at http://www.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en. Accessed 17 Oct 2017

  4. OECD (1992) Test No. 203: fish, acute toxicity test. Available online at http://www.oecd-ilibrary.org/environment/test-no-203-fish-acute-toxicity-test_9789264069961-en. Accessed 17 Oct 2017

  5. OECD (2018) Test no. 210: fish, early-life stage toxicity test, growth inhibition test. Available online at http://www.oecd-ilibrary.org/environment/test-no-210-fish-early-life-stage-toxicity-test_9789264203785-en;jsessionid=3he2xatcu4u0i.x-oecd-live-03

  6. OECD (2018) Test no. 211: Daphnia magna reproduction test. Available online at http://www.oecd-ilibrary.org/environment/test-no-211-daphnia-magna-reproduction-test_9789264185203-en;jsessionid=3he2xatcu4u0i.x-oecd-live-03

  7. Vestel J, Caldwell DJ, Constantine L, D’Arco VJ, Davidson T, Dolan DG et al (2016) Use of acute and chronic ectoxicity data in environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35:1201–1212

    Article  CAS  Google Scholar 

  8. ECETOC Technical Report No. 120: activity-based relationships for aquatic ecotoxicology data: use of the activity approach to strengthen MoA predictions (2013)

    Google Scholar 

  9. Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41

    Article  CAS  Google Scholar 

  10. Cronin MTD, Dearden JC, Dobbs AJ (1991) QSAR studies of comparative toxicity in aquatic organisms. Sci Total Environ 109:431–439

    Article  Google Scholar 

  11. Könemann H (1981) Quantitative structure-activity-relationships in fish toxicity studies. 1. Relationship for 50 industrial pollutants. Toxicology 19:209–221

    Article  Google Scholar 

  12. Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA (1997) Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16:948–967

    Article  CAS  Google Scholar 

  13. Austin T, Denoyelle M, Chaudry A, Stradling S, Eadsforth C (2015) European chemicals agency dossier submissions as an experimental data source: refinement of a fish toxicity model for predicting acute LC50 values. Environ Toxicol Chem 34:369–378

    Article  CAS  Google Scholar 

  14. Webb SF (2004) A data-based perspective on the environmental risk assessment of human pharmaceuticals I - collation of available ecotoxicity data. In: Kummerer K (ed) Pharmaceuticals in the environment: Sources, fate, effects and risks, 2nd edn. Springer, Berlin, pp 317–342

    Chapter  Google Scholar 

  15. Kar S, Roy K (2010) First report on interspecies quantitative correlation of ecotoxicity of pharmaceuticals. Chemosphere 81:738–747

    Article  CAS  Google Scholar 

  16. Tugcu G, Turker Sacan M, Vracko M, Novic M, Minovski N (2012) QSTR modelling of the acute toxicity of pharmaceuticals to fish. SAR QSAR Environ Res 23:297–310

    Article  CAS  Google Scholar 

  17. Sanderson H, Thomsen M (2007) Ecotoxicological quantitative structure-activity relationships for pharmaceuticals. Bull Environ Contam Toxicol 79:331–335

    Article  CAS  Google Scholar 

  18. Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, McArdell CS (2011) Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res 45:75–92

    Article  CAS  Google Scholar 

  19. Escher BI, Bramaz N, Mueller JF, Quayle P, Rutishauser S, Vermeirssen ELM (2008) Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ectoxicity testing of environmental samples. J Environ Monit 10:612–621

    Article  CAS  Google Scholar 

  20. Escher BI, Eggen RIL, Schreiber U, Schreiber Z, Vye E, Wisner B et al (2002) Baseline toxicity (narcosis) of organic chemicals determined by in vitro membrane potential measurements in energy-transducing membranes. Environ Sci Technol 36:1971–1979

    Article  CAS  Google Scholar 

  21. Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36(20):4201–4217

    Article  CAS  Google Scholar 

  22. Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental-pollutants. 1. Structure-activity-relationships for prediction of aquatic toxicity. Chemosphere 25:471–491

    Article  CAS  Google Scholar 

  23. Thomas P, Dawick J, Lampi M, Lemaire P, Presow S, van Egmond R et al (2015) Application of the activity framework for assessing aquatic ecotoxicology data for organic chemicals. Environ Sci Technol 49:12289–12296

    Article  CAS  Google Scholar 

  24. Ellison CM, Madden JC, Cronin MTD, Enoch SJ (2015) Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6. Chemosphere 139:146–154

    Article  CAS  Google Scholar 

  25. Ellison CM, Piechota P, Madden JC, Enoch SJ, Cronin MT (2016) Adverse outcome pathway (AOP) informed modeling of aquatic toxicology: QSARs, read-across, and interspecies verification of modes of action. Environ Sci Technol 50:3995–4007

    Article  CAS  Google Scholar 

  26. Enoch SJ, Hewitt M, Cronin MTD, Azam S, Madden JC (2008) Classification of chemicals according to mechanism of aquatic toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree. Chemosphere 73:243–248

    Article  CAS  Google Scholar 

  27. ECETOC Technical Report No. 102: Intelligent testing strategies in ecotoxicology: mode of action approach for specifically acting chemicals (2007)

    Google Scholar 

  28. He J, Fu L, Wang Y, Li JJ, Wang XH, Su LM et al (2014) Investigation on baseline toxicity to rats based on aliphatic compounds and comparison with toxicity to fish: effect of exposure routes on toxicity. Regul Toxicol Pharmacol 70:98–106

    Article  CAS  Google Scholar 

  29. Su LM, Liu X, Wang Y, Li JJ, Wang XH, Sheng LX et al (2014) The discrimination of excess toxicity from baseline effect: effect of bioconcentration. Sci Total Environ 484:137–145

    Article  CAS  Google Scholar 

  30. Sanderson H, Thomsen M (2009) Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action. Toxicol Lett 187:84–93

    Article  CAS  Google Scholar 

  31. Brausch JM, Connors KA, Brooks BW, Rand GM (2012) Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology 218. Springer, pp 1–99

    Google Scholar 

  32. Hrovat M, Segner H, Jeram S (2009) Variability of in vivo fish acute toxicity data. Regulat Toxicolol Pharmacol 54:294–300

    Article  CAS  Google Scholar 

  33. ACD/Structure Elucidator, version 15.01, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com (2015)

  34. Hsieh SH, Hsu CH, Tsai DY, Chen CY (2006) Quantitative structure-activity relationships (QSAR) for toxicity of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Environ Toxicol Chem 25:2920–2926

    Article  CAS  Google Scholar 

  35. Tsai KP, Chen CY (2007) An algal toxicity database of organic toxicants derived by a closed-system technique. Environ Toxicol Chem 26:1931–1939

    Article  CAS  Google Scholar 

  36. Zhang X, Qin W, He J, Wen Y, Su L, Sheng L et al (2013) Discrimination of excess toxicity from narcotic effect: comparison of toxicity of class-based organic chemicals to Daphnia magna and Tetrahymena pyriformis. Chemosphere 93:397–407

    Article  Google Scholar 

Download references

Acknowledgments

The financial contribution of the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in-kind contribution through the European Union Innovative Medicines Initiative (IMI) iPiE Project (Grant Agreement no. 115735) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith C. Madden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ebbrell, D.J., Cronin, M.T.D., Ellison, C.M., Firman, J.W., Madden, J.C. (2020). Development of Baseline Quantitative Structure-Activity Relationships (QSARs) for the Effects of Active Pharmaceutical Ingredients (APIs) to Aquatic Species. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics