Skip to main content

Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case

  • Protocol
  • First Online:
Book cover Ecotoxicological QSARs

Abstract

The ecotoxicological tools reveal to be profitably employable within the assessment of the so-called environmental footprint, which is commonly based on the results of a chemical monitoring. Due to the heterogeneity of biological endpoints and the possibility to explore several exposure frames, as well as to consider higher levels of organization (from cells to organisms and mesocosms), the definition of a protocol is desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D (2019) Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Sci Total Environ 648:1052–1081. https://doi.org/10.1016/j.scitotenv.2018.08.130

    Article  CAS  PubMed  Google Scholar 

  2. Teodosiu C, Gilca AF, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod Elsevier 197:1210. https://doi.org/10.1016/j.jclepro.2018.06.247

    Article  CAS  Google Scholar 

  3. Papa M, Alfonsín C, Moreira MT, Bertanza G (2016) Ranking wastewater treatment trains based on their impacts and benefits on human health: a “biological assay and disease” approach. J Clean Prod 113:311–317. https://doi.org/10.1016/j.jclepro.2015.11.021

    Article  CAS  Google Scholar 

  4. Papa M, Pedrazzani R, Bertanza G (2013) How green are environmental technologies? A new approach for a global evaluation: the case of WWTP effluents ozonation. Water Res 47:3679–3687. https://doi.org/10.1016/j.watres.2013.04.015

    Article  CAS  PubMed  Google Scholar 

  5. Chapman PM (2000) Whole effluent toxicity TESTING—usefulness, level of protection, and risk assessment. Environ Toxicol Chem 19:3. https://doi.org/10.1897/1551-5028(2000)019<0003:WETTUL>2.3.CO;2

    Article  CAS  Google Scholar 

  6. Ra JS, Kim HK, Chang NI, Kim SD (2007) Whole effluent toxicity (WET) tests on wastewater treatment plants with Daphnia magna and Selenastrum capricornutum. Environ Monit Assess 129:107–113. https://doi.org/10.1007/s10661-006-9431-2

    Article  CAS  PubMed  Google Scholar 

  7. Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh S-E (2016) Toxicity assessment using different bioassays and microbial biosensors. Environ Int 92–93:106–118. https://doi.org/10.1016/j.envint.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  8. Gruiz K, Fekete-Kertész I, Kunglné-Nagy Z, Hajdu C, Feigl V, Vaszita E, Molnár M (2016) Direct toxicity assessment — methods, evaluation, interpretation. Sci Total Environ 563–564:803–812. https://doi.org/10.1016/j.scitotenv.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  9. Norberg-King TJ, Embry MR, Belanger SE, Braunbeck T, Butler JD, Dorn PB, Farr B, Guiney PD, Hughes SA, Jeffries M, Journel R, Lèonard M, McMaster M, Oris JT, Ryder K, Segner H, Senac T, Van Der Kraak G, Whale G, Wilson P (2018) An international perspective on the tools and concepts for effluent toxicity assessments in the context of animal alternatives: reduction in vertebrate use. Environ Toxicol Chem 37:2745–2757. https://doi.org/10.1002/etc.4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gargosova HZ, Urminska B (2017) Assessment of the efficiency of wastewater treatment plant using ecotoxicity tests, vol 26, pp 56–62

    Google Scholar 

  11. Tonkes M, De Graaf PJF, Graansma J (1999) Assessment of complex industrial effluents in the Netherlands using a whole effluent toxicity (or wet) approach. Water Sci Technol 39:55–61. https://doi.org/10.1016/S0273-1223(99)00253-X

    Article  Google Scholar 

  12. Välitalo P, Perkola N, Seiler TB, Sillanpää M, Kuckelkorn J, Mikola A, Hollert H, Schultz E (2016) Estrogenic activity in Finnish municipal wastewater effluents. Water Res 88:740–749. https://doi.org/10.1016/j.watres.2015.10.056

    Article  CAS  PubMed  Google Scholar 

  13. Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen EL (2008) Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. J Environ Monit 10:622–631. https://doi.org/10.1039/b800951a

    Article  CAS  PubMed  Google Scholar 

  14. Avberšek M, Žegura B, Filipič M, Heath E (2011) Integration of GC-MSD and ER-Calux® assay into a single protocol for determining steroid estrogens in environmental samples. Sci Total Environ 409:5069–5075. https://doi.org/10.1016/j.scitotenv.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  15. Arlos MJ, Parker WJ, Bicudo JR, Law P, Marjan P, Andrews SA, Servos MR (2018) Multi-year prediction of estrogenicity in municipal wastewater effluents. Sci Total Environ 610–611:1103–1112. https://doi.org/10.1016/j.scitotenv.2017.08.171

    Article  CAS  PubMed  Google Scholar 

  16. Caldwell DJ, Mastrocco F, Anderson PD, Länge R, Sumpter JP (2012) Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ Toxicol Chem 31:1396–1406. https://doi.org/10.1002/etc.1825

    Article  CAS  PubMed  Google Scholar 

  17. Escher BI, Aït-Aïssa S, Behnisch PA, Brack W, Brion F, Brouwer A, Buchinger S, Crawford SE, Du Pasquier D, Hamers T, Hettwer K, Hilscherová K, Hollert H, Kase R, Kienle C, Tindall AJ, Tuerk J, van der Oost R, Vermeirssen E, Neale PA (2018) Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Sci Total Environ 628–629:748–765. https://doi.org/10.1016/j.scitotenv.2018.01.340

    Article  CAS  PubMed  Google Scholar 

  18. Leusch FDL, Chapman HF, Korner W, Gooneratne SR, Tremblay LA (2005) Efficacy of an advanced sewage treatment plant in southeast Queensland, Australia, to remove estrogenic chemicals. Environ Sci Technol 39:5781–5786. https://doi.org/10.1021/es0484303

    Article  CAS  PubMed  Google Scholar 

  19. Jarošová B, Bláha L, Giesy JP, Hilscherová K (2014) What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environ Int 64:98–109. https://doi.org/10.1016/j.envint.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  20. Pedrazzani R, Bertanza G, Brnardić I, Cetecioglu Z, Dries J, Dvarionienė J, García-Fernández AJ, Langenhoff A, Libralato G, Lofrano G, Škrbić B, Martínez-López E, Meriç S, Pavlović DM, Papa M, Schröder P, Tsagarakis KP, Vogelsang C (2019) Opinion paper about organic trace pollutants in wastewater: toxicity assessment in a European perspective. Sci Total Environ 651:3202–3221. https://doi.org/10.1016/J.SCITOTENV.2018.10.027

    Article  CAS  PubMed  Google Scholar 

  21. Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W, Crago J, Denslow ND, Dopp E, Hilscherova K, Humpage AR, Kumar A, Grimaldi M, Jayasinghe BS, Jarosova B, Jia A, Makarov S, Maruya KA, Medvedev A, Mehinto AC, Mendez JE, Poulsen A, Prochazka E, Richard J, Schifferli A, Schlenk D, Scholz S, Shiraishi F, Snyder S, Su G, Tang JYM, van der BB, van der LSC, Werner I, Westerheide SD, Wong CKC, Yang M, Yeung BHY, Zhang X, Leusch FDL (2014) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48:1940–1956. https://doi.org/10.1021/es403899t

    Article  CAS  PubMed  Google Scholar 

  22. Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45:2473–2484. https://doi.org/10.1016/j.watres.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  23. Coes AL, Paretti NV, Foreman WT, Iverson JL, Alvarez DA (2014) Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods. Sci Total Environ 473-474:731. https://doi.org/10.1016/j.scitotenv.2013.12.082

    Article  CAS  PubMed  Google Scholar 

  24. Aymerich I, Acuña V, Ort C, Rodríguez-Roda I, Corominas L (2017) Fate of organic microcontaminants in wastewater treatment and river systems: an uncertainty assessment in view of sampling strategy, and compound consumption rate and degradability. Water Res 125:152. https://doi.org/10.1016/j.watres.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  25. Petrie B, Barden R, Kasprzyk-Hordern B (2014) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3. https://doi.org/10.1016/j.watres.2014.08.053

    Article  CAS  PubMed  Google Scholar 

  26. Budde WL, JW Eichelberger TD, Behymer WL (1988). Method 525.2 determination of organic compounds in drinking water by liquid-solid extraction and capillary column gas chromatography/mass spectrometry revision 2.0Budde-Method 525.1 Revision

    Google Scholar 

  27. Sambuy Y, Alloisio S, Bertanza G, Feretti D, Letasiova S, Mazzoleni G, Pedrazzani R, Caloni F (2018) Air, water and soil: which alternatives? Alternative models in environmental toxicology. Altex 35:254. https://doi.org/10.14573/altex.1802121

  28. Maertens A, Hartung T (2018) Green toxicology-know early about and avoid toxic product liabilities. Toxicol Sci 161:285. https://doi.org/10.1093/toxsci/kfx243

    Article  CAS  PubMed  Google Scholar 

  29. ISO. (2012). ISO 8692:2012(en), Water quality — fresh water algal growth inhibition test with unicellular green algae

    Google Scholar 

  30. International Organization for Standardization (2007) Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 3: Method using freeze-dried bacteria. 11348–3. Geneva (CH)

    Google Scholar 

  31. International Organization for Standardization (2012) Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — acute toxicity test. 6341. Geneva (CH)

    Google Scholar 

  32. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  33. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131. https://doi.org/10.1038/nprot.2008.75

    Article  CAS  PubMed  Google Scholar 

  34. Laaninen T (2019) Revision of the drinking water directive

    Google Scholar 

  35. International Organization for Standardization (2018) Water quality – Determination of the estrogenic potential of water and waste water – Part 1: Yeast estrogen screen (Saccharomyces cerevisiae). 19040–1. Geneva (CH)

    Google Scholar 

  36. APHA, AWWA, WEF (2017) Standard methods for the examination of water and wastewater. E.W. Rice, R.B. Baird, A.D. Eaton, editors 23rd edn, Publisher: American Public Health Association, American Water Works Association, Water Environment Federation. Washington D.C.  ISBN: 9780875532875

    Google Scholar 

  37. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res Mutagen Relat Subjdoi 113:173. https://doi.org/10.1016/0165-1161(83)90010-9

    Article  CAS  Google Scholar 

  38. Tice R R, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi,H, Miyamae Y, Rojas E, Ryu J-C, Sasaki Y F (2000). Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206:221. https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J

    Article  CAS  Google Scholar 

  39. Ma TH, Xu Z, Xu C, McConnell H, Valtierra Rabago E, Adriana Arreola G, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res Mutagen Relat Subj 334:185–195. https://doi.org/10.1016/0165-1161(95)90010-1

    Article  CAS  Google Scholar 

  40. Cabaravdic M (2010) Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of cells to benzo(a) pyrene. Med Arh 64:215–218

    PubMed  Google Scholar 

  41. Fiskesjö G (1995) Allium test. In: In vitro toxicity testing protocols. Humana Press, Totowa, pp 119–127. https://doi.org/10.1385/0-89603-282-5:119

    Chapter  Google Scholar 

  42. Rank J, Lopez L C, Nielsen M H, Moretton J (2002). Genotoxicity of maleic hydrazide, acridine and DEHP in Allium cepa root cells performed by two different laboratories. Hereditas 136(1):13–18. https://doi.org/10.1034/j.1601-5223.2002.1360103.x

    Article  CAS  Google Scholar 

  43. Cohen SM, Boobis AR, Dellarco VL, Doe JE, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC (2019) Chemical carcinogenicity revisited 3: risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul Toxicol Pharmacol 103:100–105. https://doi.org/10.1016/j.yrtph.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  44. Doe JE, Boobis AR, Dellarco V, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC (2019) Chemical carcinogenicity revisited 2: current knowledge of carcinogenesis shows that categorization as a carcinogen or non-carcinogen is not scientifically credible. Regul Toxicol Pharmacol 103:124–129. https://doi.org/10.1016/j.yrtph.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  45. Wolf DC, Cohen SM, Boobis AR, Dellarco VL, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Doe JE (2019) Chemical carcinogenicity revisited 1: a unified theory of carcinogenicity based on contemporary knowledge. Regul Toxicol Pharmacol 103:86–92. https://doi.org/10.1016/J.YRTPH.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  46. Cohen SM, Arnold LL (2011) Chemical Carcinogenesis. Toxicol Sci 120:S76–S92. https://doi.org/10.1093/toxsci/kfq365

    Article  CAS  PubMed  Google Scholar 

  47. Ruch RJ, Trosko JE, Farber E (2001) Gap-junction communication in chemical carcinogenesis (multiple letters). Drug Metab Rev Taylor & Francis 33:117. https://doi.org/10.1081/DMR-100000137

    Article  CAS  Google Scholar 

  48. Rosenkranz HS (2002) Exploring the relationship between the inhibition of gap junctional intercellular communication and other biological phenomena. Carcinogenesis 21:1007–1011. https://doi.org/10.1093/carcin/21.5.1007

    Article  Google Scholar 

  49. El-Fouly MH, Trosko JE, Chang CC (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168:422. https://doi.org/10.1016/0014-4827(87)90014-0

    Article  CAS  PubMed  Google Scholar 

  50. Vanparys P, Corvi R, Aardema MJ, Gribaldo L, Hayashi M, Hoffmann S, Schechtman L (2012) Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics. Mutat Res – Genet Toxicol Environ Mutagen 744:111–116. https://doi.org/10.1016/j.mrgentox.2012.02.001

    Article  CAS  Google Scholar 

  51. OECD (2007) Detailed review paper on cell transformation assays for detection of chemical carcinogens. OECD Series on Testing and Assessment (31)

    Google Scholar 

  52. Urani C, Stefanini FM, Bussinelli L, Melchioretto P, Crosta GF (2009) Image analysis and automatic classification of transformed foci. J Microsc 234:269–279. https://doi.org/10.1111/j.1365-2818.2009.03171.x

    Article  CAS  PubMed  Google Scholar 

  53. Forcella M, Callegaro G, Melchioretto P, Gribaldo L, Frattini M, Stefanini FM, Fusi P, Urani C (2016) Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways. Toxicol Vitr 36:71–80. https://doi.org/10.1016/j.tiv.2016.07.006

    Article  CAS  Google Scholar 

  54. European Commission (2013) Recommendation 2013/179/EU on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Off J Eur Union 210. https://doi.org/10.3000/19770677.L_2013.124.eng

  55. Pedrazzani R, Cavallotti I, Bollati E, Ferreri M, Bertanza G (2018) The role of bioassays in the evaluation of ecotoxicological aspects within the PEF/OEF protocols: the case of WWTPs. Ecotoxicol Environ Saf 147:742–748. https://doi.org/10.1016/j.ecoenv.2017.09.031

    Article  CAS  PubMed  Google Scholar 

  56. Pedrazzani R, Ziliani E, Cavallotti I, Bollati E, Ferreri M, Bertanza G Use of ecotoxicology tools within the environmental footprint evaluation protocols: the case of wastewater treatment plants. Desalin Water Treat. In press

    Google Scholar 

  57. Gruiz K, Meggyes T, Fenyvesi É (2015) Engineering tools for environmental risk Management: 2. Environmental toxicology. CRC Press

    Google Scholar 

  58. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546. https://doi.org/10.1007/s11367-008-0038-4

    Article  CAS  Google Scholar 

  59. Papa M, Ceretti E, Viola GCV, Feretti D, Zerbini I, Mazzoleni G, Steimberg N, Pedrazzani R, Bertanza G (2016) The assessment of WWTP performance: towards a jigsaw puzzle evaluation? Chemosphere 145:291–300. https://doi.org/10.1016/j.chemosphere.2015.11.054

    Article  CAS  PubMed  Google Scholar 

  60. EEA (2011) Revealing the costs of air pollution from industrial facilities in EuropeEEA technical Report. https://doi.org/10.2800/23502

    Book  Google Scholar 

  61. De Schryver AM, Brakkee KW, Goedkoop MJ, Huijbregts MAJ (2009) Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems. Environ Sci Technol 43:1689. https://doi.org/10.1021/es800456m

    Article  CAS  PubMed  Google Scholar 

  62. WHO (2013) WHO methods and data sources for global burden of disease estimates 2000-2011. Glob Heal Estim Tech Pap WHO 4:81

    Google Scholar 

  63. Bertanza G, Canato M, Laera G, Vaccari M, Svanström M, Heimersson S (2017) A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment. Environ Sci Pollut Res 24:17383. https://doi.org/10.1007/s11356-017-9409-3

    Article  Google Scholar 

  64. Bertanza G, Canato M, Laera G (2018) Towards energy self-sufficiency and integral material recovery in waste water treatment plants: assessment of upgrading options. J Clean Prod 170:1206. https://doi.org/10.1016/j.jclepro.2017.09.228

    Article  CAS  Google Scholar 

  65. Bertanza G, Baroni P, Canato M (2016) Ranking sewage sludge management strategies by means of decision support systems: a case study. Resour Conserv Recycl 110:1. https://doi.org/10.1016/j.resconrec.2016.03.011

    Article  Google Scholar 

Download references

Acknowledgments

We thank dr. Elisabetta Ceretti for her technical support in laboratory activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pedrazzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pedrazzani, R. et al. (2020). Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics