Hesse A, Müller F (1899) Berichte d. Deutsch. Chem Gesellschaft 32:565–765
CAS
CrossRef
Google Scholar
Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helvetica Chimica Acta 45:675–685
CAS
CrossRef
Google Scholar
Goossens J, Fernández-Calvo P, Schweizer F et al (2016) Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91:673–689
CAS
PubMed
CrossRef
Google Scholar
Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66
CAS
CrossRef
PubMed
Google Scholar
Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chini A, Fonseca S, Fernández G et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671
CAS
CrossRef
PubMed
Google Scholar
Thines B, Katsir L, Melotto M et al (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665
CAS
CrossRef
PubMed
Google Scholar
Pauwels L, Barbero GF, Geerinck J et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shyu C, Figueroa P, DePew CL et al (2012) JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell Online 24:536–550
CAS
CrossRef
Google Scholar
Sheard LB, Tan X, Mao H et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–407
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Goetz S, Hellwege A, Stenzel I et al (2012) Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiol 158:1715–1727
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen J, Sonobe K, Ogawa N et al (2013) Inhibition of Arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. J Plant Res 126:161–168
CAS
PubMed
CrossRef
Google Scholar
Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12 oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97:10625–10630
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Park JH, Halitschke R, Kim HB et al (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12
CrossRef
PubMed
Google Scholar
Caldelari D, Wang G, Farmer EE et al (2011) Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol Biol 75:25–33
CAS
PubMed
CrossRef
Google Scholar
Zhai Q, Zhang X, Wu F et al (2015) Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27:2814–2828
CAS
PubMed
PubMed Central
Google Scholar
Shan X, Wang J, Chua L et al (2011) The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764
CAS
PubMed
CrossRef
Google Scholar
Noir S, Bomer M, Takahashi N et al (2013) Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol 161:1930–1951
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Feys B, Benedetti CE, Penfold CN et al (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell Online 6:751–759
CAS
CrossRef
Google Scholar
Staswick PE, Sut W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89:6837–6840
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Vellosillo T, Martinez M, Lopez MA et al (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell Online 19:831–846
CAS
CrossRef
Google Scholar
Gutierrez L, Mongelard G, Floková K et al (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fattorini L, Falasca G, Kevers C et al (2009) Adventitious rooting is enhanced by methyl jasmonate in tobacco thin cell layers. Planta 231:155–168
CAS
PubMed
CrossRef
Google Scholar
Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Ann Rev Plant Biol 63:563–590
CAS
CrossRef
Google Scholar
Dathe W, Rönsch H, Preiss A et al (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid a plant growth inhibitor in pericarp. Planta. 155:530–535
CrossRef
Google Scholar
Swiatek A, Van Dongen W, Esmans EL et al (2004) Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiol 135:161–172
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pauwels L, Morreel K, De Witte E et al (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci U S A 105:1380–1385
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen Q, Sun J, Zhai Q et al (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell Online 23:3335–3352
CAS
CrossRef
Google Scholar
Aida M, Beis D, Heidstra R et al (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:119–120
CrossRef
Google Scholar
Chini A, Gimenez-Ibanez S, Goossens A et al (2016) Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33:147–156
CAS
CrossRef
PubMed
Google Scholar
Thireault C, Shyu C, Yoshida Y et al (2015) Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J 82:669–679
CAS
CrossRef
PubMed
Google Scholar
Campos ML, Yoshida Y, Major IT et al (2016) Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat Commun 7:1–10
Google Scholar
Guo Q, Yoshida Y, Major IT et al (2018) JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A 115:10768–10777
CrossRef
CAS
Google Scholar
Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, EEF (2013) Role of NINJA in root jasmonate signaling. Proc Natl Acad Sci U S A 110:15473–15478
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gasperini D, Chételat A, Acosta IF et al (2015) Multilayered organization of jasmonate signalling in the regulation of root growth. PLoS Genet 11:1–27
CrossRef
CAS
Google Scholar
Fernández-Calvo P, Chini A, Fernández-Barbero G et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Bömer M, O’Brien JA, Pérez-Salamó I et al (2018) COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in Arabidopsis. Ann Bot 31:1117–1129
Google Scholar
Gasperini D, Chauvin A, Acosta IF et al (2015) Axial and radial oxylipin transport. Plant Physiol 169:2244–2254
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Zheng J, Li S et al (2017) Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol Plant 10:695–708
CAS
PubMed
CrossRef
Google Scholar
Sun J, Chen Q, Qi L et al (2011) Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis pin2 protein. New Phytol 191:360–375
CAS
PubMed
CrossRef
Google Scholar
Leyser HMO, Lincoln CA, Timpte C et al (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364:161–164
CAS
PubMed
CrossRef
Google Scholar
Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445
CAS
CrossRef
PubMed
Google Scholar
Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451
CAS
PubMed
CrossRef
Google Scholar
Stepanova AN, Hoyt JM, Hamilton AA et al (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell Online 17:2230–2242
CAS
CrossRef
Google Scholar
Zhu Z, An F, Feng Y et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mao JL, Miao ZQ, Wang Z et al (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:1–20
Google Scholar
Cai XT, Xu P, Zhao PX et al (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5:1–13
Google Scholar
Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100
CAS
PubMed
CrossRef
Google Scholar
Ren C, Han C, Peng W et al (2009) A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol 151:1412–1420
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kim H, Kwon M, Ryu H et al (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140:548–557
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kim B, Fujioka S, Kwon M et al (2013) Arabidopsis Brassinosteroid-overproducing gulliver3-D/dwarf4-D mutants exhibit altered responses to Jasmonic acid and pathogen. Plant Cell Rep 32:1139–1149
CAS
PubMed
CrossRef
Google Scholar
Avalbaev A, Yuldashev R, Fedorova K et al (2016) Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. J Plant Physiol 191:101–110
CAS
PubMed
CrossRef
Google Scholar
Jang G, Chang SH, Um TY et al (2017) Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 7:1–13
CrossRef
CAS
Google Scholar
Yang Z-B, He C, Ma Y et al (2017) Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol 173:1420–1433
CAS
CrossRef
PubMed
Google Scholar
Van Norman JM, Xuan W, Beeckman T et al (2013) To branch or not to branch: the role of pre-patterning in lateral root formation. Development 140:4301–4310
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Ötvös K, Benková E (2017) Spatiotemporal mechanisms of root branching. Curr Opin Genet Dev 45:82–89
PubMed
CrossRef
CAS
Google Scholar
Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Ann Rev Plant Biol 65:639–666
CAS
CrossRef
Google Scholar
Grunewald W, Vanholme B, Pauwels L et al (2009) Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–928
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sun J, Xu Y, Ye S et al (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell Online 21:1495–1511
CAS
CrossRef
Google Scholar
Wang SC, Ichii M, Taketa S et al (2002) Effect of jasmonic acid on lateral root formation in rice seedling. Acta Bot Sin 44:502–504
CAS
Google Scholar
Hentrich M, Böttcher C, Düchting P et al (2013) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74:626–637
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Raya-González J, Pelagio-Flores R, López-Bucio J (2012) The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. J Plant Physiol 169:1348–1358
PubMed
CrossRef
CAS
Google Scholar
Yadav V, Mallappa C, Gangappa SN et al (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light–mediated photomorphogenic growth. Plant Cell 17:1953–1966
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gangappa SN, Prasad VBR, Chattopadhyay S (2010) Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis. Plant Physiol 154:1210–1219
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gangappa SN, Chattopadhyay S (2010) MYC2, a bHLH transcription factor, modulates the adult phenotype of SPA1. Plant Signal Behav 5:1650–1652
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ishimaru Y, Hayashi K, Suzuki T et al (2018) Jasmonic acid inhibits auxin-induced lateral rooting independently of the CORONATINE INSENSITIVE 1 receptor. Plant Physiol 177:1704–1716
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Morris EC, Griffiths M, Golebiowska A et al (2017) Shaping 3D root system architecture. Curr Biol 27:919–930
CrossRef
CAS
Google Scholar
Ditengou FA, Teale WD, Kochersperger P et al (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:18818–18823
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sheng L, Hu X, Du Y, et al (2017) Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development. dev.152132
Google Scholar
Chehab EW, Yao C, Henderson Z et al (2012) Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 22:701–706
CAS
PubMed
CrossRef
Google Scholar
Guo H, Nolan TM, Song G et al (2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol 28:3316–3324.e6
CAS
PubMed
CrossRef
Google Scholar
Dong Q, Zhang Z, Liu Y et al (2019) FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett 593:97–106
CAS
PubMed
CrossRef
Google Scholar
Gonneau M, Desprez T, Martin M et al (2018) Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr Biol 28:2452–2458.e4
CAS
PubMed
CrossRef
Google Scholar
Tardieu F, Cabrera-Bosquet L, Pridmore T et al (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783
CAS
PubMed
CrossRef
Google Scholar
Larrieu A, Champion A, Legrand J et al (2015) A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat Commun 6:1–9
CrossRef
CAS
Google Scholar
Lakehal A, Bellini C (2018) Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol Plant 165:90–100
PubMed
CrossRef
CAS
Google Scholar
Lischweski S, Muchow A, Guthörl D et al (2015) Jasmonates act positively in adventitious root formation in petunia cuttings. BMC Plant Biol 15:1–10
CrossRef
CAS
Google Scholar
Chen LR, Chen YJ, Lee CY et al (2007) MeJA-induced transcriptional changes in adventitious roots of Bupleurum kaoi. Plant Sci 173:12–24
CAS
CrossRef
Google Scholar
Ahkami AH, Lischewski S, Haensch KT et al (2009) Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181:613–625
CAS
PubMed
CrossRef
Google Scholar
Fattorini L, Hause B, Gutierrez L et al (2018) Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis. BMC Plant Biol 18:1–18
CrossRef
CAS
Google Scholar
Gutierrez L, Bussell JD, Pacurar DI et al (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and MicroRNA abundance. Plant Cell 21:3119–3132
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Staswick P, Rowe M, Spalding EP et al (2017) Jasmonoyl-L-Tryptophan Disrupts IAA activity through the AUX1 Auxin Permease. Front Plant Sci 8:1–10
CrossRef
Google Scholar
Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sorin C, Bussell JD, Camus I et al (2005) Auxin and light control of adventitious rooting in Arabidopsis. Plant Cell 17:1343–1359
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ahkami AH, Melzer M, Ghaffari MR et al (2013) Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499–517
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rasmussen A, Hosseini SA, Hajirezaei MR et al (2015) Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot 66:1437–1452
CAS
PubMed
CrossRef
Google Scholar
Swiatek A, Lenjou M, Van Bockstaele D et al (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ikeuchi M, Iwase A, Rymen B et al (2017) Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol 175:1158–1174
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Song S, Huang H, Gao H et al (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–279
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rasmussen A, Hu Y, Depaepe T et al (2017) Ethylene controls adventitious root initiation sites in Arabidopsis hypocotyls independently of strigolactones. J Plant Growth Regul 36:897–911
CAS
CrossRef
Google Scholar
Bowman JL, Kohchi T, Yamato KT et al (2017) Insights into land plant evolution garnered from the marchantia polymorpha genome. Cell 171:287–304.e15
CAS
PubMed
CrossRef
Google Scholar
Sukumar P, Maloney GS, Muday GK (2013) Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 162:1392–1405
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Blilou I, Xu J, Wildwater M et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44
CAS
CrossRef
PubMed
Google Scholar