Skip to main content

Multiple Roles of Jasmonates in Shaping Rhizotaxis: Emerging Integrators

Part of the Methods in Molecular Biology book series (MIMB,volume 2085)

Abstract

The root system and its architecture enormously contribute to plant survival and adaptation to the environment. Depending on the intrinsic genetic information and the surrounding rhizosphere, plants develop a highly plastic root system, which is a critical determinant for survival. Plant root system, which includes primary root (PR), lateral roots (LR) and adventitious roots (AR), is shaped by tightly controlled developmental programs. Phytohormones are the main signaling components that orchestrate and coordinate the genetic information and the external stimuli to shape the root system patterning or rhizotaxis. Besides their role in plant stress responses and defense against herbivory and pathogen attacks, jasmonic acid and its derivatives, including the receptor-active conjugate jasmonoyl-L-isoleucine (JA-Ile), emerge as potential regulators of rhizotaxis. In this chapter, we summarize and discuss the recent progress achieved during the recent years to understand the JA-mediated genetic and molecular networks guiding PR, LR, and AR initiation. We highlight the role of JAs as critical integrators in shaping rhizotaxis.

Key words

  • Jasmonates
  • Rhizotaxis
  • Primary root
  • Lateral roots
  • Adventitious roots
  • Organogenesis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0142-6_1
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0142-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hesse A, Müller F (1899) Berichte d. Deutsch. Chem Gesellschaft 32:565–765

    CAS  CrossRef  Google Scholar 

  2. Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helvetica Chimica Acta 45:675–685

    CAS  CrossRef  Google Scholar 

  3. Goossens J, Fernández-Calvo P, Schweizer F et al (2016) Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91:673–689

    CAS  PubMed  CrossRef  Google Scholar 

  4. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  CrossRef  PubMed  Google Scholar 

  5. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Chini A, Fonseca S, Fernández G et al (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    CAS  CrossRef  PubMed  Google Scholar 

  7. Thines B, Katsir L, Melotto M et al (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    CAS  CrossRef  PubMed  Google Scholar 

  8. Pauwels L, Barbero GF, Geerinck J et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Shyu C, Figueroa P, DePew CL et al (2012) JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell Online 24:536–550

    CAS  CrossRef  Google Scholar 

  10. Sheard LB, Tan X, Mao H et al (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–407

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Goetz S, Hellwege A, Stenzel I et al (2012) Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiol 158:1715–1727

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  12. Chen J, Sonobe K, Ogawa N et al (2013) Inhibition of Arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. J Plant Res 126:161–168

    CAS  PubMed  CrossRef  Google Scholar 

  13. Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12 oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97:10625–10630

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Park JH, Halitschke R, Kim HB et al (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    CrossRef  PubMed  Google Scholar 

  15. Caldelari D, Wang G, Farmer EE et al (2011) Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol Biol 75:25–33

    CAS  PubMed  CrossRef  Google Scholar 

  16. Zhai Q, Zhang X, Wu F et al (2015) Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27:2814–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shan X, Wang J, Chua L et al (2011) The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764

    CAS  PubMed  CrossRef  Google Scholar 

  18. Noir S, Bomer M, Takahashi N et al (2013) Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiol 161:1930–1951

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Feys B, Benedetti CE, Penfold CN et al (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell Online 6:751–759

    CAS  CrossRef  Google Scholar 

  20. Staswick PE, Sut W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci U S A 89:6837–6840

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Vellosillo T, Martinez M, Lopez MA et al (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell Online 19:831–846

    CAS  CrossRef  Google Scholar 

  22. Gutierrez L, Mongelard G, Floková K et al (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Fattorini L, Falasca G, Kevers C et al (2009) Adventitious rooting is enhanced by methyl jasmonate in tobacco thin cell layers. Planta 231:155–168

    CAS  PubMed  CrossRef  Google Scholar 

  24. Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Ann Rev Plant Biol 63:563–590

    CAS  CrossRef  Google Scholar 

  25. Dathe W, Rönsch H, Preiss A et al (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid a plant growth inhibitor in pericarp. Planta. 155:530–535

    CrossRef  Google Scholar 

  26. Swiatek A, Van Dongen W, Esmans EL et al (2004) Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiol 135:161–172

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Pauwels L, Morreel K, De Witte E et al (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci U S A 105:1380–1385

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Chen Q, Sun J, Zhai Q et al (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell Online 23:3335–3352

    CAS  CrossRef  Google Scholar 

  29. Aida M, Beis D, Heidstra R et al (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:119–120

    CrossRef  Google Scholar 

  30. Chini A, Gimenez-Ibanez S, Goossens A et al (2016) Redundancy and specificity in jasmonate signalling. Curr Opin Plant Biol 33:147–156

    CAS  CrossRef  PubMed  Google Scholar 

  31. Thireault C, Shyu C, Yoshida Y et al (2015) Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J 82:669–679

    CAS  CrossRef  PubMed  Google Scholar 

  32. Campos ML, Yoshida Y, Major IT et al (2016) Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat Commun 7:1–10

    Google Scholar 

  33. Guo Q, Yoshida Y, Major IT et al (2018) JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A 115:10768–10777

    CrossRef  CAS  Google Scholar 

  34. Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, EEF (2013) Role of NINJA in root jasmonate signaling. Proc Natl Acad Sci U S A 110:15473–15478

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Gasperini D, Chételat A, Acosta IF et al (2015) Multilayered organization of jasmonate signalling in the regulation of root growth. PLoS Genet 11:1–27

    CrossRef  CAS  Google Scholar 

  36. Fernández-Calvo P, Chini A, Fernández-Barbero G et al (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  37. Bömer M, O’Brien JA, Pérez-Salamó I et al (2018) COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in Arabidopsis. Ann Bot 31:1117–1129

    Google Scholar 

  38. Gasperini D, Chauvin A, Acosta IF et al (2015) Axial and radial oxylipin transport. Plant Physiol 169:2244–2254

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Q, Zheng J, Li S et al (2017) Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol Plant 10:695–708

    CAS  PubMed  CrossRef  Google Scholar 

  40. Sun J, Chen Q, Qi L et al (2011) Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis pin2 protein. New Phytol 191:360–375

    CAS  PubMed  CrossRef  Google Scholar 

  41. Leyser HMO, Lincoln CA, Timpte C et al (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364:161–164

    CAS  PubMed  CrossRef  Google Scholar 

  42. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    CAS  CrossRef  PubMed  Google Scholar 

  43. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    CAS  PubMed  CrossRef  Google Scholar 

  44. Stepanova AN, Hoyt JM, Hamilton AA et al (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell Online 17:2230–2242

    CAS  CrossRef  Google Scholar 

  45. Zhu Z, An F, Feng Y et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Mao JL, Miao ZQ, Wang Z et al (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:1–20

    Google Scholar 

  47. Cai XT, Xu P, Zhao PX et al (2014) Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun 5:1–13

    Google Scholar 

  48. Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100

    CAS  PubMed  CrossRef  Google Scholar 

  49. Ren C, Han C, Peng W et al (2009) A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol 151:1412–1420

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  50. Kim H, Kwon M, Ryu H et al (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140:548–557

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  51. Kim B, Fujioka S, Kwon M et al (2013) Arabidopsis Brassinosteroid-overproducing gulliver3-D/dwarf4-D mutants exhibit altered responses to Jasmonic acid and pathogen. Plant Cell Rep 32:1139–1149

    CAS  PubMed  CrossRef  Google Scholar 

  52. Avalbaev A, Yuldashev R, Fedorova K et al (2016) Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. J Plant Physiol 191:101–110

    CAS  PubMed  CrossRef  Google Scholar 

  53. Jang G, Chang SH, Um TY et al (2017) Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 7:1–13

    CrossRef  CAS  Google Scholar 

  54. Yang Z-B, He C, Ma Y et al (2017) Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol 173:1420–1433

    CAS  CrossRef  PubMed  Google Scholar 

  55. Van Norman JM, Xuan W, Beeckman T et al (2013) To branch or not to branch: the role of pre-patterning in lateral root formation. Development 140:4301–4310

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  56. Ötvös K, Benková E (2017) Spatiotemporal mechanisms of root branching. Curr Opin Genet Dev 45:82–89

    PubMed  CrossRef  CAS  Google Scholar 

  57. Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Ann Rev Plant Biol 65:639–666

    CAS  CrossRef  Google Scholar 

  58. Grunewald W, Vanholme B, Pauwels L et al (2009) Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–928

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Sun J, Xu Y, Ye S et al (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell Online 21:1495–1511

    CAS  CrossRef  Google Scholar 

  60. Wang SC, Ichii M, Taketa S et al (2002) Effect of jasmonic acid on lateral root formation in rice seedling. Acta Bot Sin 44:502–504

    CAS  Google Scholar 

  61. Hentrich M, Böttcher C, Düchting P et al (2013) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74:626–637

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Raya-González J, Pelagio-Flores R, López-Bucio J (2012) The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. J Plant Physiol 169:1348–1358

    PubMed  CrossRef  CAS  Google Scholar 

  63. Yadav V, Mallappa C, Gangappa SN et al (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light–mediated photomorphogenic growth. Plant Cell 17:1953–1966

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Gangappa SN, Prasad VBR, Chattopadhyay S (2010) Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis. Plant Physiol 154:1210–1219

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Gangappa SN, Chattopadhyay S (2010) MYC2, a bHLH transcription factor, modulates the adult phenotype of SPA1. Plant Signal Behav 5:1650–1652

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Ishimaru Y, Hayashi K, Suzuki T et al (2018) Jasmonic acid inhibits auxin-induced lateral rooting independently of the CORONATINE INSENSITIVE 1 receptor. Plant Physiol 177:1704–1716

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  67. Morris EC, Griffiths M, Golebiowska A et al (2017) Shaping 3D root system architecture. Curr Biol 27:919–930

    CrossRef  CAS  Google Scholar 

  68. Ditengou FA, Teale WD, Kochersperger P et al (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:18818–18823

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  69. Sheng L, Hu X, Du Y, et al (2017) Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development. dev.152132

    Google Scholar 

  70. Chehab EW, Yao C, Henderson Z et al (2012) Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 22:701–706

    CAS  PubMed  CrossRef  Google Scholar 

  71. Guo H, Nolan TM, Song G et al (2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol 28:3316–3324.e6

    CAS  PubMed  CrossRef  Google Scholar 

  72. Dong Q, Zhang Z, Liu Y et al (2019) FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett 593:97–106

    CAS  PubMed  CrossRef  Google Scholar 

  73. Gonneau M, Desprez T, Martin M et al (2018) Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr Biol 28:2452–2458.e4

    CAS  PubMed  CrossRef  Google Scholar 

  74. Tardieu F, Cabrera-Bosquet L, Pridmore T et al (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    CAS  PubMed  CrossRef  Google Scholar 

  75. Larrieu A, Champion A, Legrand J et al (2015) A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat Commun 6:1–9

    CrossRef  CAS  Google Scholar 

  76. Lakehal A, Bellini C (2018) Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol Plant 165:90–100

    PubMed  CrossRef  CAS  Google Scholar 

  77. Lischweski S, Muchow A, Guthörl D et al (2015) Jasmonates act positively in adventitious root formation in petunia cuttings. BMC Plant Biol 15:1–10

    CrossRef  CAS  Google Scholar 

  78. Chen LR, Chen YJ, Lee CY et al (2007) MeJA-induced transcriptional changes in adventitious roots of Bupleurum kaoi. Plant Sci 173:12–24

    CAS  CrossRef  Google Scholar 

  79. Ahkami AH, Lischewski S, Haensch KT et al (2009) Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181:613–625

    CAS  PubMed  CrossRef  Google Scholar 

  80. Fattorini L, Hause B, Gutierrez L et al (2018) Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis. BMC Plant Biol 18:1–18

    CrossRef  CAS  Google Scholar 

  81. Gutierrez L, Bussell JD, Pacurar DI et al (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and MicroRNA abundance. Plant Cell 21:3119–3132

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  82. Staswick P, Rowe M, Spalding EP et al (2017) Jasmonoyl-L-Tryptophan Disrupts IAA activity through the AUX1 Auxin Permease. Front Plant Sci 8:1–10

    CrossRef  Google Scholar 

  83. Staswick PE (2009) The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  84. Sorin C, Bussell JD, Camus I et al (2005) Auxin and light control of adventitious rooting in Arabidopsis. Plant Cell 17:1343–1359

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  85. Ahkami AH, Melzer M, Ghaffari MR et al (2013) Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499–517

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  86. Rasmussen A, Hosseini SA, Hajirezaei MR et al (2015) Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot 66:1437–1452

    CAS  PubMed  CrossRef  Google Scholar 

  87. Swiatek A, Lenjou M, Van Bockstaele D et al (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  88. Ikeuchi M, Iwase A, Rymen B et al (2017) Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol 175:1158–1174

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Song S, Huang H, Gao H et al (2014) Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–279

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  90. Rasmussen A, Hu Y, Depaepe T et al (2017) Ethylene controls adventitious root initiation sites in Arabidopsis hypocotyls independently of strigolactones. J Plant Growth Regul 36:897–911

    CAS  CrossRef  Google Scholar 

  91. Bowman JL, Kohchi T, Yamato KT et al (2017) Insights into land plant evolution garnered from the marchantia polymorpha genome. Cell 171:287–304.e15

    CAS  PubMed  CrossRef  Google Scholar 

  92. Sukumar P, Maloney GS, Muday GK (2013) Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 162:1392–1405

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  93. Blilou I, Xu J, Wildwater M et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all colleagues whose work could not be cited due to space limitations. Research by our group is supported by the Swedish Research Council for Research and Innovation for Sustainable Growth (VINNOVA), the Swedish Research Council (VR), and the Carl Kempe Foundation.

Author Contribution: A.L. designed and wrote the manuscript with help from A.R. and C.B. A.L., C.B., and A.R. edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdellah Lakehal or Catherine Bellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Lakehal, A., Ranjan, A., Bellini, C. (2020). Multiple Roles of Jasmonates in Shaping Rhizotaxis: Emerging Integrators. In: Champion, A., Laplaze, L. (eds) Jasmonate in Plant Biology. Methods in Molecular Biology, vol 2085. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0142-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0142-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0141-9

  • Online ISBN: 978-1-0716-0142-6

  • eBook Packages: Springer Protocols