Skip to main content

Global Characterization of Circulating Nucleic Acids

  • Protocol
  • First Online:
Nucleic Acid Detection and Structural Investigations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2063))

  • 1323 Accesses

Abstract

Circulating nucleic acids (CNAs) include genomic and mitochondrial DNA fragments, small RNAs, and bacterial and viral DNA/RNA. Different mechanisms such as cell apoptosis, necrosis, and active CNA release from cells have been proposed to result in nucleic acids in the circulation. Application of next generation sequencing technology demonstrated that CNAs contain specific mutations, indels, microsatellite alterations, and epigenetic changes (DNA methylation) associated with various diseases. Their clinical implications have been demonstrated for diseases such as cancer, stroke, trauma, myocardial infarction, autoimmune disorders, and pregnancy-associated complications. Thus, CNAs in blood represent an attractive family of molecules that can serve as biomarkers and the analysis of CNAs can be alternative for immunohistochemical analyses of conventional biopsies. The methods described in this chapter provides details for circulating DNA and small RNA isolation, CNA(-derived cDNA) library preparation, and sequencing data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB et al (2018) Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med 10:466

    Article  Google Scholar 

  2. Khier S, Lohan L (2018) Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future Sci OA 4:FSO295

    Article  Google Scholar 

  3. Ronquist KG, Ronquist G, Carlsson L, Larsson A (2009) Human prostasomes contain chromosomal DNA. Prostate 69:737–743

    Article  CAS  Google Scholar 

  4. Beck J, Urnovitz HB, Riggert J, Clerici M, Schütz E (2009) Profile of the circulating DNA in apparently healthy individuals. Clin Chem 55:730–738

    Article  CAS  Google Scholar 

  5. Beck J, Urnovitz HB, Saresella M, Caputo D, Clerici M, Mitchell WM et al (2010) Serum DNA motifs predict disease and clinical status in multiple sclerosis. J Mol Diagn 12:312–319

    Article  CAS  Google Scholar 

  6. Chan RW, Jiang P, Peng X, Tam LS, Liao GJ, Li EK et al (2014) Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. Proc Natl Acad Sci U S A 111:E5302–E5311

    Article  CAS  Google Scholar 

  7. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68

    Article  CAS  Google Scholar 

  8. Magee RG, Telonis AG, Loher P, Londin E, Rigoutsos I (2018) Profiles of miRNA isoforms and tRNA fragments in prostate cancer. Sci Rep 8:5314

    Article  Google Scholar 

  9. Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148

    Article  CAS  Google Scholar 

  10. Kowalski MP, Krude T (2015) Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 66:20–29

    Article  CAS  Google Scholar 

  11. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  12. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  Google Scholar 

  13. Chan RW, Jiang P, Peng X, Tam LS, Liao GJW et al (2014) Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. Proc Natl Acad Sci U S A 111:E5302–E5311

    Article  CAS  Google Scholar 

  14. Benjamini Y, Speed TP (2012) Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 40:e72

    Article  CAS  Google Scholar 

  15. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G et al (2010) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  Google Scholar 

  16. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  Google Scholar 

  17. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G (2018) Trends in the development of miRNA bioinformatics tools. Brief Bioinform. https://doi.org/10.1093/bib/bby054

  18. Chan KCA, Zhang J, Hui ABY, Wong N, Lau TK, Leung TN et al (2004) Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 50:88–92

    Article  CAS  Google Scholar 

  19. Wang BG, Huang HY, Chen YC, Bristow RE, Kassauei K, Cheng CC et al (2003) Increased plasma DNA integrity in cancer patients. Cancer Res 63:3966–3968

    CAS  PubMed  Google Scholar 

  20. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  Google Scholar 

  21. Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use. RNA 22:839–851

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Dunaeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunaeva, M., Pruijn, G.J.M. (2020). Global Characterization of Circulating Nucleic Acids. In: Astakhova, K., Bukhari, S. (eds) Nucleic Acid Detection and Structural Investigations. Methods in Molecular Biology, vol 2063. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0138-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0138-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0137-2

  • Online ISBN: 978-1-0716-0138-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics