Skip to main content

A Workflow for the Identification of Mycotoxin Metabolites Using Liquid Chromatography–Ion Mobility-Mass Spectrometry

  • Protocol
  • First Online:
Ion Mobility-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2084))

Abstract

The structural identification of phase-I and phase-II metabolites of mycotoxins is a difficult task, mostly due to the lack of standards and because of the large number of isomeric forms. Here, we describe the use of ion mobility-mass spectrometry to analyze cereal extracts and how structural information on newly discovered mycotoxins metabolites could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57:165–186

    Article  CAS  Google Scholar 

  2. Righetti L, Paglia G, Galaverna G, Dall'Asta C (2016) Recent advances and future challenges in modified mycotoxin analysis: why HRMS has become a key instrument in food contaminant research. Toxins 8:361

    Article  Google Scholar 

  3. Picache JA, Rose BS, Balinski A, Leaptrot KL, Sherrod SD, May JC, McLean JA (2019) Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci 10:983–993. https://doi.org/10.1039/C8SC04396E

    Article  CAS  PubMed  Google Scholar 

  4. Schrimpe-Rutledge AC, Sherrod SD, McLean JA (2028) Improving the discovery of secondary metabolite natural products using ion mobility–mass spectrometry. Curr Opin Chem Biol 42:160–166

    Article  Google Scholar 

  5. Paglia G, Williams JP, Menikarachchi LC, Thompson JW, Tyldesley- Worster R, Halldorsson S, Rolfsson O, Moseley MA, Grant DF, Langridge J, Palsson BØ, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86:3985e3993

    Article  Google Scholar 

  6. Chalet C, Hollebrands B, Janssen HG, Augustijns P, Duchateau G (2018) Identification of phase-II metabolites of flavonoids by liquid chromatography–ion-mobility spectrometry–mass spectrometry. Anal Bioanal Chem 410:471–482

    Article  CAS  Google Scholar 

  7. Righetti L, Bergmann A, Galaverna G, Rolfsson O, Paglia G, Dall’Asta C (2018) Ion mobility-derived collision cross section database: application to mycotoxin analysis. Anal Chim Acta 1014:50–57

    Article  CAS  Google Scholar 

  8. Zhou Z, Shen X, Zhu ZJ (2016) Advancing the large-scale CCS database for metabolomics and lipidomics at the machine learning era. Anal Chem 88:11084–11091

    Article  CAS  Google Scholar 

  9. Zhou Z, Xiong X, Zhu ZJ (2017) MetCCS predictor: a web server for predicting collision cross section values of metabolites in ion mobility-mass spectrometry based metabolomics. Bioinformatics 33:2235–2237

    Article  CAS  Google Scholar 

  10. Colby SM, Thomas DG, Nunez JR, Baxter DJ, Glaesemann KR, Brown JM, Pirrung MA, Govind N, Teeguarden JG, Metz TO, Renslow RS (2018) ISiCLE: a molecular collision cross section calculation pipeline for establishing large in silico reference libraries for compound identification. Quant Biol arXiv:1809.08378 [qbio.BM]

    Google Scholar 

  11. ChemAxon (2017) cxcalc, 16.11

    Google Scholar 

  12. Damiani T, Righetti L, Galaverna G, Suman M, Dall’Asta C (2019) Analytical issue related to fumonisins: a matter of sample comminution? Food Control 95:1–5

    Article  CAS  Google Scholar 

  13. Sauerschnig C, Doppler M, Bueschl C, Schuhmacher R (2018) Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Meta 8:1

    Google Scholar 

  14. Regueiro J, Negreira N, Berntssen MHG (2016) Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Anal Chem 88:11169e11177

    Google Scholar 

  15. Paglia G, Astarita G (2017) Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nature 12:797e813

    Google Scholar 

  16. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8:3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Righetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Righetti, L., Dall’Asta, C. (2020). A Workflow for the Identification of Mycotoxin Metabolites Using Liquid Chromatography–Ion Mobility-Mass Spectrometry. In: Paglia, G., Astarita, G. (eds) Ion Mobility-Mass Spectrometry . Methods in Molecular Biology, vol 2084. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0030-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0030-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0029-0

  • Online ISBN: 978-1-0716-0030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics