Skip to main content

The Use of LipidIMMS Analyzer for Lipid Identification in Ion Mobility-Mass Spectrometry-Based Untargeted Lipidomics

  • Protocol
  • First Online:
Ion Mobility-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2084))

Abstract

Untargeted lipidomics aims to comprehensively measure and characterize all lipid species in biological systems. Ion mobility-mass spectrometry (IM-MS) has showed a great potential for untargeted lipidomic analysis. Coupling with liquid chromatography and data-independent tandem MS techniques, acquired IM-MS data set contains four-dimensional information for lipid identification, including m/z of MS1 ion, retention time (RT), collision cross section (CCS), and MS/MS spectra. In this protocol, we introduced a data processing workflow using an integrative web server, namely, LipidIMMS Analyzer, to support accurate lipid identification. The protocol demonstrated the integration of all four dimensional information to achieve unambiguous identifications of lipids in complex biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895. https://doi.org/10.1016/j.cell.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  2. Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12(11):668–679. https://doi.org/10.1038/nrendo.2016.98

    Article  CAS  PubMed  Google Scholar 

  3. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281–296. https://doi.org/10.1038/nrm.2017.138

    Article  CAS  PubMed  Google Scholar 

  4. Rohrig F, Schulze A (2016) The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 16(11):732–749. https://doi.org/10.1038/nrc.2016.89

    Article  CAS  PubMed  Google Scholar 

  5. Hinz C, Liggi S, Griffin JL (2018) The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr Opin Chem Biol 42:42–50. https://doi.org/10.1016/j.cbpa.2017.10.018

    Article  CAS  PubMed  Google Scholar 

  6. Paglia G, Kliman M, Claude E, Geromanos S, Astarita G (2015) Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 407(17):4995–5007. https://doi.org/10.1007/s00216-015-8664-8

    Article  CAS  PubMed  Google Scholar 

  7. Zheng X, Smith RD, Baker ES (2018) Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. Curr Opin Chem Biol 42:111–118. https://doi.org/10.1016/j.cbpa.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  8. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87(3):1422–1436. https://doi.org/10.1021/ac504720m

    Article  CAS  PubMed  Google Scholar 

  9. Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, Monroe ME, Moore RJ, Smith RD, Baker ES (2017) Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annu Rev Anal Chem (Palo Alto, Calif) 10(1):71–92. https://doi.org/10.1146/annurev-anchem-061516-045212

    Article  CAS  Google Scholar 

  10. Zhou Z, Tu J, Xiong X, Shen X, Zhu ZJ (2017) LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal Chem 89(17):9559–9566. https://doi.org/10.1021/acs.analchem.7b02625

    Article  CAS  PubMed  Google Scholar 

  11. Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW, Menikarachchi L, Lai S, Walsh C, Moseley A, Plumb RS, Grant DF, Palsson BO, Langridge J, Geromanos S, Astarita G (2015) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87(2):1137–1144. https://doi.org/10.1021/ac503715v

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Z, Shen X, Chen X, Tu J, Xiong X, Zhu ZJ (2019) LipidIMMS Analyzer: integrating multi-dimensional information to support lipid identification in ion mobility-mass spectrometry based lipidomics. Bioinformatics 35(4):698–700. https://doi.org/10.1093/bioinformatics/bty661

    Article  CAS  PubMed  Google Scholar 

  13. Paglia G, Astarita G (2017) Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc 12(4):797–813. https://doi.org/10.1038/nprot.2017.013

    Article  CAS  PubMed  Google Scholar 

  14. Tu J, Yin Y, Xu M, Wang R, Zhu ZJ (2018) Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain. Metabolomics 14(1):5. https://doi.org/10.1007/s11306-017-1304-x

    Article  CAS  Google Scholar 

  15. Stow SM, Causon T, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Stephan H, John CF (2017) An interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal Chem 89(17):9048–9055. https://doi.org/10.1021/acs.analchem.7b01729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aivett B, Bryson CG, Joon YL, Kent JB, Jennifer EK, Matthew EM, Thomas OM, Richard DS, Erin SB, John F, Samuel HP (2018) Extending dynamic range and enhancing compound identification for untargeted ion mobility-MS workflows. In: 66th annual ASMS conference on mass spectrometry and allied topics, San Diego, CA, June 2–6, 2018

    Google Scholar 

  17. http://www.nonlinear.com/progenesis/qi/v2.3/user-guide/, Nonlinear Dynamics, Waters

  18. Hartler J, Triebl A, Ziegl A, Trotzmuller M, Rechberger GN, Zeleznik OA, Zierler KA, Torta F, Cazenave-Gassiot A, Wenk MR, Fauland A, Wheelock CE, Armando AM, Quehenberger O, Zhang Q, Wakelam MJO, Haemmerle G, Spener F, Kofeler HC, Thallinger GG (2017) Deciphering lipid structures based on platform-independent decision rules. Nat Methods 14(12):1171–1174. https://doi.org/10.1038/nmeth.4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hines KM, May JC, McLean JA, Xu L (2016) Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem 88(14):7329–7336. https://doi.org/10.1021/acs.analchem.6b01728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work has been supported by National Key R&D Program of China (2018YFA0800902), National Natural Science Foundation of China (Grants 21575151, 31971356) and Chinese Academy of Sciences Major Facility-based Open Research Program. Z.-J. Z. is supported by Thousand Youth Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jiang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, X., Zhou, Z., Zhu, ZJ. (2020). The Use of LipidIMMS Analyzer for Lipid Identification in Ion Mobility-Mass Spectrometry-Based Untargeted Lipidomics. In: Paglia, G., Astarita, G. (eds) Ion Mobility-Mass Spectrometry . Methods in Molecular Biology, vol 2084. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0030-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0030-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0029-0

  • Online ISBN: 978-1-0716-0030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics