Preparing the Hydrocarbon/Crude Oil

  • Roger C. Prince
  • Josh D. Butler
  • Gail E. Bragin
  • Thomas F. Parkerton
  • Aaron D. Redman
  • Barbara A. Kelley
  • Daniel J. Letinski
Part of the Springer Protocols Handbooks book series (SPH)


Crude oils are complex mixtures, and a fraction of them can evaporate quite rapidly when oil is spilled into the biosphere. A fraction can also dissolve in underlying water. This article discusses artificially weathering crude oils and refined products, and preparing water-accommodated fractions and true solutions of hydrocarbons. It also discusses some essential precautions for reproducibly adding oils to experimental systems.


Oil evaporation Water accommodated fractions Conserved internal markers 


  1. 1.
    Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. W.H. Freeman, New YorkGoogle Scholar
  2. 2.
    Simanzhenkov V, Idem R (2003) Crude oil chemistry. CRC, New YorkCrossRefGoogle Scholar
  3. 3.
    Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Khan SA, Sarfraz S, Price D (2012) TLC-FID calibration and accurate weight determination of SARA fractions in heavy crude oil. Pet Sci Technol 30:2401–2406CrossRefGoogle Scholar
  5. 5.
    Rodgers RP, Marshall AG (2007) Petroleomics: advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). In: Mullins OC, Sheu EY, Hammami A, Marshall AG (eds) Asphaltenes, heavy oils, and petroleomics. Springer, New York, pp 63–93CrossRefGoogle Scholar
  6. 6.
    Environment Canada (2015) Oil properties.
  7. 7.
    Peters KE, Walters CC, Moldowan JM (2004) The Biomarker Guide: Volume 1: Biomarkers and isotopes in the environment and human history. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Peters KE, Walters CC, Moldowan JM (2004) The Biomarker Guide: Volume 2: Biomarkers and isotopes in petroleum exploration and earth history. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Wenger LM, Davis CL, Isaksen GH (2002) Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reservoir Eval Eng 5:375–383CrossRefGoogle Scholar
  10. 10.
    Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180CrossRefPubMedGoogle Scholar
  11. 11.
    Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy BAS, Camilli R (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20229–20234CrossRefPubMedGoogle Scholar
  12. 12.
    Devold H (2006) Oil and gas production handbook; an introduction to oil and gas production. ABB ATPA Oil and Gas. Available at
  13. 13.
    Gros J, Nabi D, Würz B, Wick LY, Brussaard CPD, Huisman J, van der Meer JR, Reddy CM, Arey JS (2014) First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water. Environ Sci Technol 48:9400–9411CrossRefPubMedGoogle Scholar
  14. 14.
    Lessard RR, DeMarco G (2000) The significance of oil spill dispersants. Spill Sci Technol Bull 6:59–68CrossRefGoogle Scholar
  15. 15.
    Chandrasekar S, Sorial GA, Weaver JW (2006) Dispersant effectiveness on oil spills–impact of salinity. ICES J Mar Sci 63:1418–1430CrossRefGoogle Scholar
  16. 16.
    Prince RC, Butler JC (2014) A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environ Sci Pollut Res 21:9506–9510CrossRefGoogle Scholar
  17. 17.
    Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49:6376–6384CrossRefPubMedGoogle Scholar
  18. 18.
    Husain T (1995) Kuwaiti oil fires: regional environmental perspectives. Elsevier, New YorkGoogle Scholar
  19. 19.
    Speight JG (2002) Handbook of petroleum product analysis. Wiley Interscience, HobokenGoogle Scholar
  20. 20.
    ASTM (2013) Standard test method for research octane number of spark-ignition engine fuel. D2699-13bGoogle Scholar
  21. 21.
    McIntyre CP, Volk H, Batts BD, George SC (2008) The suitability of the fuel used for motor-sledging on Scott's last expedition, 1910–1913. Polar Rec 44:276–277CrossRefGoogle Scholar
  22. 22.
    Stout SA, Douglas GS, Uhler D (2006) Automotive gasoline. In: Morrison RD, Murphy BL (eds) Environmental forensics contaminant specific guide. Academic, Oxford, pp 465–531Google Scholar
  23. 23.
    Uhler RM, Healey EM, McCarthy KJ, Uhler AD, Stout SA (2003) Molecular fingerprinting of gasoline by a modified EPA 8260 gas chromatography-mass spectrometry method. Int J Environ Anal Chem 83:1–20CrossRefGoogle Scholar
  24. 24.
    Prince RC, Parkerton TF, Lee C (2007) The primary aerobic biodegradation of gasoline hydrocarbons. Environ Sci Technol 41:3316–3321CrossRefPubMedGoogle Scholar
  25. 25.
  26. 26.
    USEPA (2007) Method 3500C: organic extraction and sample preparation.
  27. 27.
    Beall PW, Stout SA, Douglas GS, Uhler AD (2006) On the role of process forensics in the characterization of fugitive gasoline. Environ Claims J 14:487–505CrossRefGoogle Scholar
  28. 28.
    Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994) 17α(H),21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145CrossRefPubMedGoogle Scholar
  29. 29.
    Mrsny RJ, Barles RW, Chin D, Enevold KC, Thomas BR, Wheelis ML (1978) Use of an internal standard in monitoring the bacterial degradation of crude oil. Appl Environ Microbiol 36:776–779PubMedPubMedCentralGoogle Scholar
  30. 30.
    Prince RC, Haitmanek C, Lee CC (2008) The primary aerobic biodegradation of biodiesel B20. Chemosphere 71:1446–1451CrossRefPubMedGoogle Scholar
  31. 31.
    Takazawa RS, Strobel HW (1986) Cytochrome P-450 mediated reductive dehalogenation of the perhalogenated aromatic compound hexachlorobenzene. Biochemistry 25:4804–4809CrossRefPubMedGoogle Scholar
  32. 32.
    Walsh ME, Kyritsis P, Eady NAJ, Hill HAO, Wong LL (2000) Catalytic reductive dehalogenation of hexachloroethane by molecular variants of cytochrome P450cam (CYP101). Eur J Biochem 267:5815–5820CrossRefPubMedGoogle Scholar
  33. 33.
    Lee K, Nedwed T, Prince RC, Palandro D (2013) Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea. Mar Pollut Bull 73:314–318CrossRefPubMedGoogle Scholar
  34. 34.
    Daling PS, Singsaas I, Reed M, Hansen O (2002) Experiences in dispersant treatment of experimental oil spills. Spill Sci Technol Bull 7:201–213CrossRefGoogle Scholar
  35. 35.
    Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad MS, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208CrossRefPubMedGoogle Scholar
  36. 36.
    Wade TL, Sweet ST, Sericano JL, Guinasso NL, Diercks AR, Highsmith RC, Asper VL, Joung DJ, Shiller AM, Lohrenz SE, Joye SB (2011) Analyses of water samples from the Deepwater Horizon oil spill: documentation of the subsurface plume. In: Liu Y, Macfadyen A, Ji ZJ, Weisberg RH (eds) Monitoring and modeling the Deepwater Horizon oil spill: a record-breaking enterprise. American Geophysical Union, Washington, pp 77–82CrossRefGoogle Scholar
  37. 37.
    Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526CrossRefPubMedGoogle Scholar
  38. 38.
    Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673PubMedPubMedCentralGoogle Scholar
  39. 39.
    Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23CrossRefPubMedGoogle Scholar
  40. 40.
    McFarlin KM, Prince RC, Perkins R, Leigh MB (2014) Biodegradation of dispersed oil in arctic seawater at-1 C. PLoS One 9, e84297CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Johnson KS, Coletti LJ, Jannasch HW, Sakamoto CM, Swift DD, Riser SC (2013) Long-term nitrate measurements in the ocean using the in situ ultraviolet spectrophotometer: sensor integration into the APEX Profiling Float. J Atmos Oceanic Technol 30:1854–1866CrossRefGoogle Scholar
  42. 42.
    Boufadel MC, Reeser P, Suidan MT, Wrenn BA, Cheng J, Du X, Huang TL, Venosa AD (1999) Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environ Technol 20:191–199CrossRefGoogle Scholar
  43. 43.
    Prince RC, Atlas RM (2005) Bioremediation of marine oil spills. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, pp 269–292CrossRefGoogle Scholar
  44. 44.
    Sheridan JE, Tan YL, Nelson J (1972) Studies on the ‘Kerosene Fungus’ Cladosporium resinae (Lindau) De Vries, Part III. Morphology, taxonomy and physiology. Tuatara 19:130–165Google Scholar
  45. 45.
    Singer MM, Aurand D, Bragin GE, Clark JR, Coelho GM, Sowby ML, Tjeerdema RS (2000) Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar Pollut Bull 40:1007–1016CrossRefGoogle Scholar
  46. 46.
    Letinski D, Parkerton T, Redman A, Manning R, Bragin G, Febbo E, Palandro D, Nedwed T (2014) Use of passive samplers for improving oil toxicity and spill effects assessment. Mar Pollut Bull 86:274–282CrossRefPubMedGoogle Scholar
  47. 47.
    Gardiner WW, Word JQ, Word JD, Perkins RA, McFarlin KM, Hester BW, Word LS, Ray CM (2013) The acute toxicity of chemically and physically dispersed crude oil to key arctic species under arctic conditions during the open water season. Environ Toxicol Chem 32:2284–2300CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mager EM, Esbaugh AJ, Stieglitz JD, Hoenic R, Bodinier C, Incardona JP, Scholz NI, Benetti DD, Grosell M (2014) Acute embryonic or juvenile exposure to Deepwater Horizon crude oil impairs the swimming performance of Mahi-Mahi (Coryphaena hippurus). Environ Sci Technol 48:7053–7061CrossRefPubMedGoogle Scholar
  49. 49.
    Sjöblom J, Aske N, Auflem IH, Brandal O, Havre TE, Sæther O, Westvik A, Johnsen EE, Kallevik H (2003) Our current understanding of water-in-crude oil emulsions: recent characterization techniques and high pressure performance. Adv Colloid Interface Sci 100:399–473CrossRefGoogle Scholar
  50. 50.
    McGrath JA, Hellweger FL, Parkerton TF, Di Toro DM (2005) Application of the Narcosis Target Lipid Model to complex mixtures using gasolines as a case study. Environ Toxicol Chem 24:2382–2394CrossRefPubMedGoogle Scholar
  51. 51.
    Redman AD, Parkerton TF, McGrath JA, Di Toro DM (2012) An aquatic toxicity model for complex petroleum substances. Environ Toxicol Chem 31:2498–2506CrossRefPubMedGoogle Scholar
  52. 52.
    Redman AD, McGrath JA, Stubblefield WA, Maki AW, Di Toro DM (2012) Quantifying the concentration of crude oil microdroplets in oil–water preparations. Environ Toxicol Chem 31:1814–1822CrossRefPubMedGoogle Scholar
  53. 53.
    Clean Gulf Associates (2014) Dispersant aerial application systems: airborne support incorporated.
  54. 54.
    Belore RC, Trudel K, Mullin JV, Guarino A (2009) Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants. Mar Pollut Bull 58:118–128CrossRefPubMedGoogle Scholar
  55. 55.
    USEPA (2014) Alphabetical list of NCP product schedule (Products available for use during an oil spill).
  56. 56.
    Venosa AD, King DW, Sorial GA (2002) The baffled flask test for dispersant effectiveness: a round robin evaluation of reproducibility and repeatability. Spill Sci Technol Bull 7:299–308CrossRefGoogle Scholar
  57. 57.
    Prince RC (2015) Biostimulation of marine crude oil spills using dispersants (this series)Google Scholar
  58. 58.
    Kang HJ, Lee SY, Roh JY, Yim UH, Shim WJ, Kwon JH (2014) Prediction of ecotoxicity of heavy crude oil: contribution of measured components. Environ Sci Technol 48:2962–2970CrossRefPubMedGoogle Scholar
  59. 59.
    Reichenberg F, Smedes F, Jönsson JA, Mayer P (2008) Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem Cent J 2:1–10CrossRefGoogle Scholar
  60. 60.
    Smith KEC, Schmidt SN, Dom N, Blust R, Mayer P (2010) Controlling and maintaining exposure of hydrophobic organic compounds in aquatic toxicity tests by passive dosing. Aquat Toxicol 98:15–24CrossRefPubMedGoogle Scholar
  61. 61.
    Smith KEC, Rein A, Trapp S, Mayer P, Karlson UG (2012) Dynamic passive dosing for studying the biotransformation of hydrophobic organic chemicals: microbial degradation as an example. Environ Sci Technol 46:4852–4860CrossRefPubMedGoogle Scholar
  62. 62.
    Smith KEC, Schmidt SN, Dom N, Blust R, Holmstrup M, Mayer P (2013) Baseline toxic mixtures of non-toxic chemicals: “Solubility addition” increases exposure for solid hydrophobic chemicals. Environ Sci Technol 47:2026–2033CrossRefPubMedGoogle Scholar
  63. 63.
    Butler JD, Parkerton TF, Letinski DJ, Bragin GE, Lampi MA, Cooper KR (2013) A novel passive dosing system for determining the toxicity of phenanthrene to early life stages of zebrafish. Sci Total Environ 463:952–958CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Roger C. Prince
    • 1
  • Josh D. Butler
    • 1
  • Gail E. Bragin
    • 1
  • Thomas F. Parkerton
    • 2
  • Aaron D. Redman
    • 1
  • Barbara A. Kelley
    • 1
  • Daniel J. Letinski
    • 1
  1. 1.ExxonMobil Biomedical Sciences, Inc.AnnandaleUSA
  2. 2.ExxonMobil Biomedical Sciences, Inc.HoustonUSA

Personalised recommendations